Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Experimental And Theoretical Investigation Of Molecular Field Effects By Polarization-Resolved Resonant Inelastic X-Ray Scattering, Stephane Carniato, Renaud Guillemin, Wayne C. Stolte, Loic Journel, Richard Taieb, Dennis W. Lindle, Marc Simon Sep 2009

Experimental And Theoretical Investigation Of Molecular Field Effects By Polarization-Resolved Resonant Inelastic X-Ray Scattering, Stephane Carniato, Renaud Guillemin, Wayne C. Stolte, Loic Journel, Richard Taieb, Dennis W. Lindle, Marc Simon

Chemistry and Biochemistry Faculty Research

We present a combined theoretical and experimental study of molecular field effects on molecular core levels. Polarization-dependent resonant inelastic x-ray scattering is observed experimentally after resonant K-shell excitation of CF3Cl and HCl. We explain the linear dichroism observed in spin-orbit level intensities as due to molecular field effects, including singlet-triplet exchange, and interpret this behavior in terms of population differences in the 2px,y,z inner-shell orbitals. We investigate theoretically the different factors that can affect the electronic populations and the dynamical R dependence of the spin-orbit ratio. Finally, the results obtained are used to interpret the L-shell …