Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Electrons

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 62

Full-Text Articles in Physics

Search For The Higgs Boson Decay To A Pair Of Electrons In Proton-Proton Collisions At √S = 13 Tev, A. Tumasyan Feb 2023

Search For The Higgs Boson Decay To A Pair Of Electrons In Proton-Proton Collisions At √S = 13 Tev, A. Tumasyan

Department of Physics and Astronomy: Faculty Publications

A search is presented for the Higgs boson decay to a pair of electrons (e+e) in proton-proton collisions at √ s = 13 TeV. The data set was collected with the CMS experiment at the LHC between 2016 and 2018, corresponding to an integrated luminosity of 138 fb−1. The analysis uses event categories targeting Higgs boson production via gluon fusion and vector boson fusion. The observed upper limit on the Higgs boson branching fraction to an electron pair is 3.0 × 10−4 (3.0 × 10−4 expected) at the 95% confidence level, which …


Electron Scattering And Neutrino Physics, A. M. Ankowski, A. Ashkenazi, S. Bacca, J. L. Barrow, M. Betancourt, A. Bodek, M. E. Christy, L. Doria, S. Dytman, A. Friedland, O. Hen, C. J. Horowitz, N. Jachowicz, W. Ketchum, T. Lux, K. Mahn, C. Mariani, J. Newby, V. Pandey, A. Papadopoulou, E. Radicioni, F. Sánchez, C. Sfienti, J. M. Udías, L. Weinstein, L. Alvarez-Ruso, J. E. Amaro, C. A. Argüelles, A. B. Balantekin, S. Bolognesi, V. Brdar, P. Butti, S. Carey, Z. Djurcic, O. Dvornikov, S. Edayath, S. Gardiner, J. Isaacson, W. Jay, K. S. Mcfarland, A. Nikolakopoulos, A. Norrick, S. Pastore, G. Paz, M. H. Reno, I. Ruiz Simo, J. E. Sobczyk, A. Sousa, N. Toro, Y. D. Tsai, M. Wagman, J. G. Walsh, G. Yang Jan 2023

Electron Scattering And Neutrino Physics, A. M. Ankowski, A. Ashkenazi, S. Bacca, J. L. Barrow, M. Betancourt, A. Bodek, M. E. Christy, L. Doria, S. Dytman, A. Friedland, O. Hen, C. J. Horowitz, N. Jachowicz, W. Ketchum, T. Lux, K. Mahn, C. Mariani, J. Newby, V. Pandey, A. Papadopoulou, E. Radicioni, F. Sánchez, C. Sfienti, J. M. Udías, L. Weinstein, L. Alvarez-Ruso, J. E. Amaro, C. A. Argüelles, A. B. Balantekin, S. Bolognesi, V. Brdar, P. Butti, S. Carey, Z. Djurcic, O. Dvornikov, S. Edayath, S. Gardiner, J. Isaacson, W. Jay, K. S. Mcfarland, A. Nikolakopoulos, A. Norrick, S. Pastore, G. Paz, M. H. Reno, I. Ruiz Simo, J. E. Sobczyk, A. Sousa, N. Toro, Y. D. Tsai, M. Wagman, J. G. Walsh, G. Yang

Physics Faculty Publications

A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used …


Status And Future Plans For C³ R&D, Emilio A. Nanni, Martin Breidenbach, Zenghai Li, Caterina Vernieri, Faya Wang, Glen White, Mei Bai, Sergey Belomestnykh, Pushpalatha Bhat, Tim Barklow, William J. Berg, Valery Borzenets, John Byrd, Ankur Dhar, Ram C. Dhuley, Chris Doss, Joseph Duris, Auralee Edelen, Claudio Emma, Joseph Frisch, Annika Gabriel, Spenser Gessner, Carsten Hast, Chunguang Jing, Arkadiy Klebaner, Dongsung Kim, Anatoly Krasnykh, John Lewellen, Matthias Liepe, Michael Litos, Xueying Lu, Jared Maxon, David Montanari, Pietro Musumeci, Sergei Nagaitsev, Alireza Nassiri, Cho-Kuen Ng, David A. K. Othman, Marco Oriunno, Dennis Palmer, J. Ritchie Patterson, Michael E. Peskin, Thomas J. Peterson, John Power, Ji Qiang, James Rosenzweig, Vladimir Shiltsev, Muhammad Shumail, Evgenya Simakov, Emma Snively, Bruno Spataro, Sami Tantawi, Harry Van Der Graaf, Brandon Weatherford, Juhao Wu, Kent P. Wootton Jan 2023

Status And Future Plans For C³ R&D, Emilio A. Nanni, Martin Breidenbach, Zenghai Li, Caterina Vernieri, Faya Wang, Glen White, Mei Bai, Sergey Belomestnykh, Pushpalatha Bhat, Tim Barklow, William J. Berg, Valery Borzenets, John Byrd, Ankur Dhar, Ram C. Dhuley, Chris Doss, Joseph Duris, Auralee Edelen, Claudio Emma, Joseph Frisch, Annika Gabriel, Spenser Gessner, Carsten Hast, Chunguang Jing, Arkadiy Klebaner, Dongsung Kim, Anatoly Krasnykh, John Lewellen, Matthias Liepe, Michael Litos, Xueying Lu, Jared Maxon, David Montanari, Pietro Musumeci, Sergei Nagaitsev, Alireza Nassiri, Cho-Kuen Ng, David A. K. Othman, Marco Oriunno, Dennis Palmer, J. Ritchie Patterson, Michael E. Peskin, Thomas J. Peterson, John Power, Ji Qiang, James Rosenzweig, Vladimir Shiltsev, Muhammad Shumail, Evgenya Simakov, Emma Snively, Bruno Spataro, Sami Tantawi, Harry Van Der Graaf, Brandon Weatherford, Juhao Wu, Kent P. Wootton

Physics Faculty Publications

C3 is an opportunity to realize an e+e- collider for the study of the Higgs boson at √s = 250 GeV, with a well defined upgrade path to 550 GeV while staying on the same short facility footprint [2,3]. C3 is based on a fundamentally new approach to normal conducting linear accelerators that achieves both high gradient and high efficiency at relatively low cost. Given the advanced state of linear collider designs, the key system that requires technical maturation for C3 is the main linac. This paper presents the staged approach towards a …


Measurement Of The Nucleon F N2 / F P2 Tructure Function Ratio By The Jefferson Lab Marathon Tritium/Helium-3 Deep Inelastic Scattering Experiment, D. Abrams, H. Albataineh, B. S. Aljawrneh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, T. Averett, C. Ayerbe Gayoso, X. Bai, J. Bane, S. Barcus, A. Beck, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, D. Blyth, Roberto Petti, Et. Al. Feb 2022

Measurement Of The Nucleon F N2 / F P2 Tructure Function Ratio By The Jefferson Lab Marathon Tritium/Helium-3 Deep Inelastic Scattering Experiment, D. Abrams, H. Albataineh, B. S. Aljawrneh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, T. Averett, C. Ayerbe Gayoso, X. Bai, J. Bane, S. Barcus, A. Beck, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, D. Blyth, Roberto Petti, Et. Al.

Faculty Publications

The ratio of the nucleon F2 structure functions, F n2 / F p2 is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from 3H and 3He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab using two high-resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken …


Multidimensional, High Precision Measurements Of Beam Single Spin Asymmetries In Semi-Inclusive 𝜋⁺ Electroproduction Off Protons In The Valence Region, S. Diehl, A. Kim, G. Angelini, K. Joo, S. Adhikari, M. J. Amaryan, M. Arratia, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, S. Bastami, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, F. Bossù, Et Al. Jan 2022

Multidimensional, High Precision Measurements Of Beam Single Spin Asymmetries In Semi-Inclusive 𝜋⁺ Electroproduction Off Protons In The Valence Region, S. Diehl, A. Kim, G. Angelini, K. Joo, S. Adhikari, M. J. Amaryan, M. Arratia, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, S. Bastami, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, F. Bossù, Et Al.

Physics Faculty Publications

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π+ SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q2 ranging from 1–7  GeV2. In particular, the structure function ratio FsinϕLU/FUU has been determined, where FsinϕLU is a twist-3 …


Traveling-Wave Electrophoresis: 1d Model, Austin Green Dec 2020

Traveling-Wave Electrophoresis: 1d Model, Austin Green

Physics Capstone Projects

A 1D model of traveling-wave electrophoresis predicts that molecular diffusion raises the trapping threshold and that other physical properties of the species effect the trapping threshold as well. Small concentrations, below 5μM, raise the trapping threshold for high diffusivity species, resulting in a lower efficiency. Species with a mid-range electrophoretic mobility and diffusivity have their trapping threshold slightly lowered with an increase in concentration, leading to more particles traveling with the wave.


Aromatic Ouroboroi: Heterocycles Involving A Sigma-Donor-Acceptor Bond And 4n+2 Pi-Electrons, Kelling J. Donald, William Tiznado, Rodrigo Baez-Grez, Diego Inostroza Jan 2020

Aromatic Ouroboroi: Heterocycles Involving A Sigma-Donor-Acceptor Bond And 4n+2 Pi-Electrons, Kelling J. Donald, William Tiznado, Rodrigo Baez-Grez, Diego Inostroza

Chemistry Faculty Publications

The aromaticity and dynamics of a set of recently proposed neutral 5- and 6-membered heterocycles that are closed by dative (donor–acceptor) or multi-center s bonds, and have resonance forms with a Hu¨ckel number of p-electrons, are examined. The donors and acceptors in the rings include N, O, and F, and B, Be, and Mg, respectively. The planar geometry of the rings, coupled with evidence from different measures of aromaticity, namely the NICSzz, and NICSpzz components of the conventional nucleus independent chemical shifts (NICS), and ring current strengths (RCS), indicate non-trivial degrees of aromaticity in certain cases, including the cyclic C3B2OH6 …


Quasielastic Lepton Scattering And Back-To-Back Nucleons In The Short-Time Approximation, S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R. B. Wiringa Jan 2020

Quasielastic Lepton Scattering And Back-To-Back Nucleons In The Short-Time Approximation, S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R. B. Wiringa

Physics Faculty Publications

Understanding quasielastic electron and neutrino scattering from nuclei has taken on new urgency with current and planned neutrino oscillation experiments, and with electron scattering experiments measuring specific final states, such as those involving nucleon pairs in "back-to-back" configurations. Accurate many-body methods are available for calculating the response of light (A <= 12) nuclei to electromagnetic and weak probes, but they are computationally intensive and only applicable to the inclusive response. In the present work we introduce a novel approach, based on realistic models of nuclear interactions and currents, to evaluate the short-time (high-energy) inclusive and exclusive response of nuclei. The approach accounts reliably for crucial two-nucleon dynamics, including correlations and currents, and provides information on back-to-back nucleons observed in electron and neutrino scattering experiments. We demonstrate that in the quasielastic regime and at moderate momentum transfers both initial- and final-state correlations and two-nucleon currents are important for a quantitatively successful description of the inclusive response and final-state nucleons. Finally, the approach can be extended to include relativistic-kinematical and dynamical-effects, at least approximately in the two-nucleon sector, and to describe the response in the resonance-excitation region.


Multicenter Distorted-Wave Approach For Electron-Impact Ionization Of Molecules, Esam Ali, Don H. Madison Jul 2019

Multicenter Distorted-Wave Approach For Electron-Impact Ionization Of Molecules, Esam Ali, Don H. Madison

Physics Faculty Research & Creative Works

We have previously used the molecular three-body distorted-wave model to examine electron-impact single ionization of molecules. One of the possible weaknesses of this approach lies in the fact that the continuum electron wave functions do not depend on the orientation of the molecule. Here we introduce a model called the multicenter molecular three-body distorted-wave (MCM3DW) approach, for which the continuum electron wave functions depend on the orientation of the molecule at the time of ionization. The MCM3DW results are compared with experimental data taken from work by Dorn and colleagues [Ren, Phys. Rev. A 91, 032707 (2015)10.1103/PhysRevA.91.032707; Phys. Rev. A …


Free Electron Sources And Diffraction In Time, Eric R. Jones May 2019

Free Electron Sources And Diffraction In Time, Eric R. Jones

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The quantum revolution of the last century advanced synergistically with technology, for example, with control of the temporal and spatial coherence, and the polarization state of light. Indeed, experimental confirmation of the quirks of quantum theory, as originally highlighted by Einstein, Podolsky, and Rosen, through Bohm, and then Bell, have been performed with photons, i.e., electromagnetic wave packets prepared in the same quantum states. Experimental tests of quantum mechanics with matter wave packets have been limited due to challenges in preparing all of the packets with similar quantum states. While great strides have been made for trapped atoms and Bose-Einstein …


New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part Ii: Application To The Triplet State Of A Quantum Dot In A Magnetic Field, Marlina Slamet, Viraht Sahni Jan 2019

New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part Ii: Application To The Triplet State Of A Quantum Dot In A Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

The Schrödinger-Pauli (SP) theory of electrons in the presence of a static electromagnetic field can be described from the perspective of the individual electron via its equation of motion or 'Quantal Newtonian' first law. The law is in terms of 'classical' fields whose sources are quantum-mechanical expectation values of Hermitian operators taken with respect to the wave function. The law states that the sum of the external and internal fields experienced by each electron vanishes. The external field is the sum of the binding electrostatic and Lorentz fields. The internal field is the sum of fields representative of properties of …


New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part I, Viraht Sahni Jan 2019

New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part I, Viraht Sahni

Publications and Research

Schrödinger-Pauli (SP) theory is a description of electrons in the presence of a static electromagnetic field in which the interaction of the magnetic field with both the orbital and spin moments is explicitly considered. The theory is described from the new perspective of the individual electron via its equation of motion or ‘Quantal Newtonian’ first law. The law is in terms of ‘classical’ fields whose sources are quantum mechanical expectation values of Hermitian operators taken with respect to the system wave function. The law states that each electron experiences an external and an internal field, the sum of which vanish. …


Search For Three-Nucleon Short-Range Correlations In Light Nuclei, Z. Ye, P. Solvignon, D. Nguten, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, L. B. Weinstein Jan 2018

Search For Three-Nucleon Short-Range Correlations In Light Nuclei, Z. Ye, P. Solvignon, D. Nguten, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, L. B. Weinstein

Physics Faculty Publications

We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 < x < 2, confirming the dominance of two-nucleon short-range correlations. For x > 2, our data support the hypothesis that a previous claim of three-nucleon correlation dominance was an artifact caused by the limited resolution of the measurement. While 3N-SRCs appear to have an important contribution, our data show that isolating 3N-SRCs is significantly more complicated than for 2N-SRCs.


Electron-Impact Ionization Of H₂O At Low Projectile Energy: Internormalized Triple-Differential Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Khokon Hossen, Esam Ali, Chuangang Ning, James Colgan, Don H. Madison, Andrew Dorn Feb 2017

Electron-Impact Ionization Of H₂O At Low Projectile Energy: Internormalized Triple-Differential Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Khokon Hossen, Esam Ali, Chuangang Ning, James Colgan, Don H. Madison, Andrew Dorn

Physics Faculty Research & Creative Works

We report a combined experimental and theoretical study of the electron-impact ionization of water (H2O) at the relatively low incident energy of E0=81eV in which either the 1b1 or 3a1 orbitals are ionized leading to the stable H2O cation. The experimental data were measured by using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission over a range of ejection energies. We present experimental data for the scattering angles of 6⁰ and 10⁰ for the faster of the two outgoing electrons as a function …


Experimental And Theoretical Triple-Differential Cross Sections For Tetrahydrofuran Ionized By Low-Energy 26-Ev-Electron Impact, Esam Ali, Xueguang Ren, Alexander Dorn, Chuangang Ning, James Colgan, Don H. Madison Jun 2016

Experimental And Theoretical Triple-Differential Cross Sections For Tetrahydrofuran Ionized By Low-Energy 26-Ev-Electron Impact, Esam Ali, Xueguang Ren, Alexander Dorn, Chuangang Ning, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We report an experimental and theoretical study of low-energy electron-impact ionization of tetrahydrofuran, which is a molecule of biological interest. The experiments were performed using an advanced reaction microscope specially built for electron-impact ionization studies. The theoretical calculations were performed within the molecular three-body distorted-wave model. Reasonably good agreement is found between experiment and theory.


Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Argon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Alexander Dorn, Don H. Madison, Klaus Bartschat Jun 2016

Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Argon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Alexander Dorn, Don H. Madison, Klaus Bartschat

Physics Faculty Research & Creative Works

As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne(2p) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015)PLRAAN1050-294710.1103/PhysRevA.91.032707] to Ar(3p) ionization at the relatively low incident energy of E0 = 66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, …


Low-Energy (E₀ = 65 Ev) Electron-Impact Ionization Of Neon: Internormalized Triple-Differentical Cross Sections In 3d Kinematics, Xueguang Ren, Sadek M. Amami, Oleg I. Zatsarinny, Thomas Pfluger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn Sep 2015

Low-Energy (E₀ = 65 Ev) Electron-Impact Ionization Of Neon: Internormalized Triple-Differentical Cross Sections In 3d Kinematics, Xueguang Ren, Sadek M. Amami, Oleg I. Zatsarinny, Thomas Pfluger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn

Physics Faculty Research & Creative Works

We present a combined experimental and theoretical study on the low-energy (E0 = 65 eV) electron- impact ionization of neon. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach (DWB2-RM), the distorted-wave Born approximation with inclusion of post-collision interaction (DWBA-PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between experiment and the 3DW and BSR theories. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process.


Interference Effects For Intermediate Energy Electron-Impact Ionization Of H₂ And N₂ Molecules, Zehra Nur Ozer, Hari Chaluvadi, Don H. Madison, Mevlut Dogan Jul 2015

Interference Effects For Intermediate Energy Electron-Impact Ionization Of H₂ And N₂ Molecules, Zehra Nur Ozer, Hari Chaluvadi, Don H. Madison, Mevlut Dogan

Physics Faculty Research & Creative Works

We have studied electron impact ionization of H2 and N2 molecules at intermediate energies to look for possible two center interference effects experimentally and theoretically. Here we report a study of the interference factor I for 250 eV electron-impact ionization. The experimental measurements are performed using a crossed-beam-type electron-electron coincidence spectrometer and theoretical calculations are obtained using the Molecular Three Body Distorted Wave Approximation (M3DW). We found that the I-factor demonstrated strong evidence for two-center interference effects for both H2 and N2. We also found that the I-factor is more sensitive to projectile angular scans …


Target Electron Ionization In Li²⁺-L-Li Collisions: A Multi-Electron Perspective, Maciej Dominik Piewanowski, Laszlo Gulyas, Marko W. Horbatsch, Johannes Goullon, Natalia Ferreira, Renate Hubele, Vitor L B D De Jesus, H. Lindenblatt, Katharina R. Schneider, Michael Schulz, Michael Schuricke, Z. Song, Shaofeng Zhang, Daniel Fischer, Tom Kirchner Apr 2015

Target Electron Ionization In Li²⁺-L-Li Collisions: A Multi-Electron Perspective, Maciej Dominik Piewanowski, Laszlo Gulyas, Marko W. Horbatsch, Johannes Goullon, Natalia Ferreira, Renate Hubele, Vitor L B D De Jesus, H. Lindenblatt, Katharina R. Schneider, Michael Schulz, Michael Schuricke, Z. Song, Shaofeng Zhang, Daniel Fischer, Tom Kirchner

Physics Faculty Research & Creative Works

Target electron removal in Li2+-Li collisions at 2290 keV/amu is studied experimentally and theoretically for ground and excited lithium target configurations. It is shown that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. According to our calculations, the process is shown to be strongly single-particle like. On one hand, a high resemblance between theoretical single-particle ionization and exclusive inner-shell ionization is demonstrated, and contributions from multi-electron processes are found to be weak. On the other hand, it is indicated by the discrepancy between experimental and single-particle …


Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Neon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn Mar 2015

Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Neon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn

Physics Faculty Research & Creative Works

Low-energy (E0 0=65eV) electron-impact single ionization of Ne (2p) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8.5⁰ to 20.0⁰. The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), …


X-Ray Emission Produced In Charge-Exchange Collisions Between Highly Charged Ions And Argon: Role Of The Multiple Electron Capture, Sebastian Otranto, N. D. Cariatore, Ronald E. Olson Dec 2014

X-Ray Emission Produced In Charge-Exchange Collisions Between Highly Charged Ions And Argon: Role Of The Multiple Electron Capture, Sebastian Otranto, N. D. Cariatore, Ronald E. Olson

Physics Faculty Research & Creative Works

In this work we use the classical trajectory Monte Carlo method within an eight-electron scheme to theoretically study photonic spectra that follow charge-exchange processes between highly charged ions of charge states 10+, 17+, 18+, and 36+ with neutral argon. The energy range considered is 18 eV/amu to 4 keV/amu, covering typical electron beam ion traps and solar wind energies. The role played by multiple electron capture processes for the different collision systems under consideration is explicitly analyzed and its contribution separated as arising from radiative decay and autoionizing multiple capture. For the present collision systems we find that multiple electron …


Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses, Anh-Thu Le, Hui Wei, Cheng Jin, Vu Ngoc Tuoc, Toru Morishita, C. D. Lin Jul 2014

Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses, Anh-Thu Le, Hui Wei, Cheng Jin, Vu Ngoc Tuoc, Toru Morishita, C. D. Lin

Physics Faculty Research & Creative Works

We show that a returning electron wave packet in high-order harmonic generation (HHG) with midinfrared laser pulses converges to a universal limit for a laser wavelength above about 3µm. The results are consistent among the different methods: a numerical solution of the time-dependent Schrödinger equation, the strong-field approximation, and the quantum orbits theory. We further analyze how the contribution from different electron "trajectories" survives the macroscopic propagation in the medium. Our result thus provides a new framework for investigating the wavelength scaling law for the HHG yields.


Triplet Ground State Of The Neutral Oxygen-Vacancy Donor In Rutile Tio2, A. T. Brant, Eric M. Golden, Nancy C. Giles, Shan Yang, M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton Mar 2014

Triplet Ground State Of The Neutral Oxygen-Vacancy Donor In Rutile Tio2, A. T. Brant, Eric M. Golden, Nancy C. Giles, Shan Yang, M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to investigate the triplet (S = 1) ground state of the neutral oxygen vacancy in bulk rutile TiO2 crystals. This shallow donor consists of an oxygen vacancy with two nearest-neighbor, exchange-coupled 3+ ions located along the [001] direction and equidistant from the vacancy. The spins of the two trapped electrons, one at each 3+ ion, align parallel to give the S = 1 state. These neutral oxygen vacancies are formed near 25 K in as-grown oxidized TiO2 crystals by illuminating with sub-band-gap 442 nm laser light. The angular dependence of the EPR …


Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov Jan 2014

Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov

Physics Publications

Mechanisms of thermal quenching of photoluminescence (PL) related to defects insemiconductors are analyzed. We conclude that the Schön-Klasens (multi-center) mechanism of the thermal quenching of PL is much more common for defects in III–V and II–VI semiconductorsas compared to the Seitz-Mott (one-center) mechanism. The temperature dependencies of PLare simulated with a phenomenological model. In its simplest version, three types of defects are included: a shallow donor, an acceptor responsible for the PL, and a nonradiative center that has the highest recombination efficiency. The case of abrupt and tunable thermal quenching ofPL is considered in more detail. This phenomenon is predicted …


Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov Jan 2014

Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov

Physics Publications

Point defects in GaN were studied with time-resolved photoluminescence (PL). The effects of temperature and excitation intensity on defect-related PL have been investigated theoretically and experimentally. A phenomenological model, based on rate equations, explains the dependence of the PL intensity on excitation intensity, as well as the PL lifetime and its temperature dependence. We demonstrate that time-resolved PL measurements can be used to find the concentrations of free electrons and acceptors contributing to PL in n-type semiconductors.


Dynamical (E,2e) Studies Of Tetrahydropyran And 1,4-Dioxane, J. D. Builth-Williams, G. Da Silva, L. Chiari, D. B. Jones, Hari Chaluvadi, Don H. Madison, M. J. Brunger Jan 2014

Dynamical (E,2e) Studies Of Tetrahydropyran And 1,4-Dioxane, J. D. Builth-Williams, G. Da Silva, L. Chiari, D. B. Jones, Hari Chaluvadi, Don H. Madison, M. J. Brunger

Physics Faculty Research & Creative Works

We present experimental and theoretical results for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane. Using an (e,2e) technique in asymmetric coplanar kinematics, angular distributions of the slow ejected electron, with an energy of 20 eV, are measured when incident electrons at 250 eV ionize the target and scatter through an angle of either -10° or -15°. The data are compared with calculations performed at the molecular 3-body distorted wave level. Fair agreement between the theoretical model and the experimental measurements was observed. The similar structures for these targets provide key insights for assessing the …


Triply Differential (E,2e) Studies Of Phenol, Silva G. Da, R. F. Neves, L. Chiari, D. B. Jones, E. Ali, Don H. Madison, C. G. Ning, K. L. Nixon, M. C. Lopes, M. J. Brunger Jan 2014

Triply Differential (E,2e) Studies Of Phenol, Silva G. Da, R. F. Neves, L. Chiari, D. B. Jones, E. Ali, Don H. Madison, C. G. Ning, K. L. Nixon, M. C. Lopes, M. J. Brunger

Physics Faculty Research & Creative Works

We have measured (e,2e) triple differential cross sections (TDCS) for the electron-impact ionisation of phenol with coplanar asymmetrical kinematics for an incident electron energy of 250 eV. Experimental measurements of the angular distribution of the slow outgoing electrons at 20 eV are obtained when the incident electron scatters through angles of -5°, -10°, and -15°, respectively. The TDCS data are compared with calculations performed within the molecular 3-body distorted wave model. In this case, a mixed level of agreement, that was dependent on the kinematical condition being probed, was observed between the theoretical and experimental results in the binary peak …


Light Sea Fermions In Electron-Proton And Muon-Proton Interactions, Ulrich D. Jentschura Dec 2013

Light Sea Fermions In Electron-Proton And Muon-Proton Interactions, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

The proton radius conundrum [Pohl, Nature 466, 213 (2010)NATUAS0028-083610. 1038/nature09250 and Antognini, Science 339, 417 (2013)SCIEAS0036-807510.1126/ science.1230016] highlights the need to revisit any conceivable sources of electron-muon nonuniversality in lepton-proton interactions within the standard model. Superficially, a number of perturbative processes could appear to lead to such a nonuniversality. One of these is a coupling of the scattered electron into an electronic vacuum-polarization loop as opposed to a muonic one in the photon exchange of two valence quarks, which is present only for electron projectiles as opposed to muon projectiles. However, we show that this effect actually is part of …


Electron Penetration Ranges As A Function Of Effective Number Of Valence Electrons, Teancum Quist, Blake Moore, Greg Wilson, Jr Dennison Apr 2013

Electron Penetration Ranges As A Function Of Effective Number Of Valence Electrons, Teancum Quist, Blake Moore, Greg Wilson, Jr Dennison

Posters

The Continuous-Slow-Down Approximation (CSDA) is used to create a simple composite analytical formula to estimate the range or maximum penetration depth of incident electrons into diverse materials including conductors, semiconductors, and insulators. This formula generates an approximation to the range using a single fitting parameter, Nv, described as the effective number of valence electrons. This range of the formulation extends to electrons with energies from <10 eV to >10MeV, with 20% accuracy. A list comprised of 222 materials has been collected that greatly extends the applicability of this model. Several key material constants were compiled for each material, including the atomic …


Tracing Multiple Scattering Patterns In Absolute (E, 2e) Cross Sections For H₂ And He Over A 4Π Solid Angle, Xueguang Ren, Arne Senftleben, Thomas Pflüger, Alexander Dorn, James Colgan, Michael S. Pindzola, Ola A. Al-Hagan, Don H. Madison, Igor Bray, Dmitry V. Fursa, Joachim Hermann Ullrich Sep 2010

Tracing Multiple Scattering Patterns In Absolute (E, 2e) Cross Sections For H₂ And He Over A 4Π Solid Angle, Xueguang Ren, Arne Senftleben, Thomas Pflüger, Alexander Dorn, James Colgan, Michael S. Pindzola, Ola A. Al-Hagan, Don H. Madison, Igor Bray, Dmitry V. Fursa, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Absolutely normalized (e,2e) measurements for H2 and He covering the full solid angle of one ejected electron are presented for 16 eV sum energy of both final state continuum electrons. For both targets rich cross-section structures in addition to the binary and recoil lobes are identified and studied as a function of the fixed electron's emission angle and the energy sharing among both electrons. For H2 their behavior is consistent with multiple scattering of the projectile as discussed before. For He the binary and recoil lobes are significantly larger than for H2 and partly cover the multiple …