Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Diffusion

Portland State University

Articles 1 - 3 of 3

Full-Text Articles in Physics

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram Feb 2019

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram

Physics Faculty Publications and Presentations

Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown …


The Meyer-Neldel Rule For A Property Determined By Two Transport Mechanisms, Ralf Widenhorn, Armin Rest, Erik Bodegom May 2002

The Meyer-Neldel Rule For A Property Determined By Two Transport Mechanisms, Ralf Widenhorn, Armin Rest, Erik Bodegom

Physics Faculty Publications and Presentations

We propose that the Meyer-Neldel rule (MNR) arises naturally for a quantity where both an intrinsic process as well as a process involving impurities contribute. The strength of the latter depends solely on the density of the impurities. This leads to a spread in the apparent activation energy of the measured quantity and the observation of the MNR, even though the intrinsic processes have fixed activation energies. A consequence of the MNR is the occurrence of a temperature T[sub MN] where a measured parameter is independent of the activation energy. For the system studied, the MNR does not accurately predict …


Hydrodynamic Theory Of Multicomponent Diffusion And Thermal Diffusion In Multitemperature Gas Mixtures, John D. Ramshaw Jan 1993

Hydrodynamic Theory Of Multicomponent Diffusion And Thermal Diffusion In Multitemperature Gas Mixtures, John D. Ramshaw

Physics Faculty Publications and Presentations

A phenomenological theory is developed for multicomponent diffusion, including thermal diffusion, in gas mixtures in which the components may have different temperatures. The theory is based on the hydrodynamic approach of Maxwell and Stefan, as extended and elaborated by Furry [1] and Williams [2]. The present development further extends these earlier treatments to multiple temperatures and multicomponent thermal diffusion. The resulting diffusion fluxes obey generalized Stefan-Maxwell relations which include the effects of ordinary, forced, pressure, and thermal diffusion. When thermal diffusion is neglected, these relations have the same form as the usual single-temperature ones, except that mole fractions are replaced …