Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Diffusion

Discipline
Institution
Publication Year
Publication
File Type

Articles 1 - 30 of 44

Full-Text Articles in Physics

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram Feb 2019

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram

Physics Faculty Publications and Presentations

Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within ...


Pore Diameter Dependence Of Catalytic Activity: P-Nitrobenzaldehyde Conversion To An Aldol Product In Amine-Functionalized Mesoporous Silica, Andres Garcia, Igor I. Slowing, James W. Evans Jul 2018

Pore Diameter Dependence Of Catalytic Activity: P-Nitrobenzaldehyde Conversion To An Aldol Product In Amine-Functionalized Mesoporous Silica, Andres Garcia, Igor I. Slowing, James W. Evans

Chemistry Publications

The reaction yield for conversion of p-nitrobenzaldehyde (PNB) to an aldol product in amine-functionalized mesoporous silica nanoparticles (MSN) exhibits a 20-fold enhancement for a modest increase in pore diameter, d. This enhanced catalytic activity is shown to reflect a strong increase in the “passing propensity,” 𝒫, of reactant and product species inside the pores. We find that 𝒫 ≈ 0, corresponding to single-file diffusion, applies for the smallest d which still significantly exceeds the linear dimensions of PNB and the aldol product. However, in this regime of narrow pores, these elongated species must align with each other and with the pore ...


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy ...


Fractional Brownian Motion With A Reflecting Wall, Alexander H. O. Wada, Thomas Vojta Feb 2018

Fractional Brownian Motion With A Reflecting Wall, Alexander H. O. Wada, Thomas Vojta

Physics Faculty Research & Creative Works

Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior (x2) ~ tα, the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α > 1, the particles accumulate at the barrier leading to a divergence of the probability density. For ...


Analysis Of Residence Time In The Measurement Of Radon Activity By Passive Diffusion In An Open Volume: A Micro-Statistical Approach, Mark P. Silverman Aug 2017

Analysis Of Residence Time In The Measurement Of Radon Activity By Passive Diffusion In An Open Volume: A Micro-Statistical Approach, Mark P. Silverman

Faculty Scholarship

Residence time in a flow measurement of radioactivity is the time spent by a pre-determined quantity of radioactive sample in the flow cell. In a recent report of the measurement of indoor radon by passive diffusion in an open volume (i.e. no flow cell or control volume), the concept of residence time was generalized to apply to measurement conditions with random, rather than directed, flow. The generalization, leading to a quantity r ∆t , involved use of a) a phenomenological alpha-particle range function to calculate the effective detection volume, and b) a phenomenological description of diffusion by Fick’s law ...


Application Of The Fokker-Planck Molecular Mixing Model To Turbulent Scalar Mixing Using Moment Methods, Ehsan Madadi-Kandjani, Rodney O. Fox, Alberto Passalacqua Jun 2017

Application Of The Fokker-Planck Molecular Mixing Model To Turbulent Scalar Mixing Using Moment Methods, Ehsan Madadi-Kandjani, Rodney O. Fox, Alberto Passalacqua

Chemical and Biological Engineering Publications

An extended quadrature method of moments using the beta kernel density function (beta-EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar,"Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction ...


Point Island Models For Nucleation And Growth Of Supported Nanoclusters During Surface Deposition, Yong Han, Émilie Gaudry, Tiago J. Oliveira, James W. Evans Dec 2016

Point Island Models For Nucleation And Growth Of Supported Nanoclusters During Surface Deposition, Yong Han, Émilie Gaudry, Tiago J. Oliveira, James W. Evans

Physics and Astronomy Publications

Point island models (PIMs) are presented for the formation of supported nanoclusters (or islands) during deposition on flat crystalline substrates at lower submonolayer coverages. These models treat islands as occupying a single adsorption site, although carrying a label to track their size (i.e., they suppress island structure). However, they are particularly effective in describing the island size and spatial distributions. In fact, these PIMs provide fundamental insight into the key features for homogeneous nucleation and growth processes on surfaces. PIMs are also versatile being readily adapted to treat both diffusion-limited and attachment-limited growth and also a variety of other ...


Catalytic Conversion In Nanoporous Materials: Concentration Oscillations And Spatial Correlations Due To Inhibited Transport And Intermolecular Interactions, Andrés García, James W. Evans Nov 2016

Catalytic Conversion In Nanoporous Materials: Concentration Oscillations And Spatial Correlations Due To Inhibited Transport And Intermolecular Interactions, Andrés García, James W. Evans

Physics and Astronomy Publications

We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and ...


Method To Measure Indoor Radon Concentration In An Open Volume With Geiger-Mueller Counters: Analysis From First Principles, Mark P. Silverman Oct 2016

Method To Measure Indoor Radon Concentration In An Open Volume With Geiger-Mueller Counters: Analysis From First Principles, Mark P. Silverman

Faculty Scholarship

A simple method employing a pair of pancake-style Geiger-Mueller (GM) counters for quantitative measurement of radon activity concentration (activity per unit volume) is described and demonstrated. The use of two GM counters, together with the basic theory derived in this paper, permit the detection of alpha particles from decay of 222Rn and progeny ( 218 Po , 214 Po ) and the conversion of the alpha count rate into a radon concentration. A unique feature of this method, in comparison with standard methodologies to measure radon concentration, is the absence of a fixed control volume. Advantages afforded by the reported GM method include ...


Method To Measure Indoor Radon Concentration In An Open Volume With Geiger-Mueller Counters: Analysis From First Principles, Mark P. Silverman Oct 2016

Method To Measure Indoor Radon Concentration In An Open Volume With Geiger-Mueller Counters: Analysis From First Principles, Mark P. Silverman

Faculty Scholarship

A simple method employing a pair of pancake-style Geiger-Mueller (GM) counters for quantitative measurement of radon activity concentration (activity per unit volume) is described and demonstrated. The use of two GM counters, together with the basic theory derived in this paper, permit the detection of alpha particles from decay of 222Rn and progeny ( 218Po , 214 Po ) and the conversion of the alpha count rate into a radon concentration. A unique feature of this method, in comparison with standard methodologies to measure radon concentration, is the absence of a fixed control volume. Advantages afforded by the reported GM method include: 1 ...


Gelatin Diffusion Experiment, Jennifer Welborn Jan 2015

Gelatin Diffusion Experiment, Jennifer Welborn

Nanotechnology Teacher Summer Institutes

In this activity, nanotech participants will:

- See how food dyes and gelatin are used to model the delivery of nanoscale medicines to cells in the human body - Measure diffusion distances of 3 different colors of food dye by: Eye, photo image on a computer, ADI software (Analyzing Digital Images) Some useful websites:


Position-Dependent Diffusion Of Light In Disordered Waveguides, Alexey Yamilov, Raktim Sarma, Brandon Redding, Ben Payne, Heeso Noh, Hui Cao Jan 2014

Position-Dependent Diffusion Of Light In Disordered Waveguides, Alexey Yamilov, Raktim Sarma, Brandon Redding, Ben Payne, Heeso Noh, Hui Cao

Physics Faculty Research & Creative Works

We present direct experimental evidence for position-dependent diffusion in open random media. The interference of light in time-reversed paths results in renormalization of the diffusion coefficient, which varies spatially. To probe the wave transport inside the system, we fabricate two-dimensional disordered waveguides and monitor the light intensity from the third dimension. Change the geometry of the system or dissipation limits the size of the loop trajectories, allowing us to control the renormalization of the diffusion coefficient. This work shows the possibility of manipulating wave diffusion via the interplay of localization and dissipation.


Transition Metals On The (0001) Surface Of Graphite: Fundamental Aspects Of Adsorption, Diffusion, And Morphology, David Victor Appy, Huaping Lei, Cai-Zhuang Wang, Michael C. Tringides, Da-Jiang Liu, James W. Evans, Patricia A. Thiel Jan 2014

Transition Metals On The (0001) Surface Of Graphite: Fundamental Aspects Of Adsorption, Diffusion, And Morphology, David Victor Appy, Huaping Lei, Cai-Zhuang Wang, Michael C. Tringides, Da-Jiang Liu, James W. Evans, Patricia A. Thiel

Chemistry Publications

In this article, we review basic information about the interaction of transition metal atoms with the (0001) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out.


Simulation Study Of Seemingly Fickian But Heterogeneous Dynamics Of Two Dimensional Colloids, Jeongmin Kim, Chanjoong Kim, Bong June Sung Jan 2013

Simulation Study Of Seemingly Fickian But Heterogeneous Dynamics Of Two Dimensional Colloids, Jeongmin Kim, Chanjoong Kim, Bong June Sung

Chemical Physics Publications

A two-dimensional (2D) solid lacks long-range positional order and is diffusive by means of the cooperative motion of particles. We find from molecular dynamics simulations of hard discs that 2D colloids in solid and hexatic phases show seemingly Fickian but strongly heterogeneous dynamics. Beyond translational relaxation time, the mean-square displacement is linear with time, t, implying that discs would undergo Brownian diffusion and the self-part of the van Hove correlation function [G(s)(r, t)] might be Gaussian. But dynamics is still heterogeneous and G(s)(r, t) is exponential at large r and oscillatory with multiple peaks at intermediate ...


Carrier Capture Dynamics Of Single Ingaas/Gaas Quantum-Dot Layers, K. N. Chauhan, D. Mark Riffe, E. A. Everett, D. J. Kim, H. Yang, F. K. Shen Jan 2013

Carrier Capture Dynamics Of Single Ingaas/Gaas Quantum-Dot Layers, K. N. Chauhan, D. Mark Riffe, E. A. Everett, D. J. Kim, H. Yang, F. K. Shen

All Physics Faculty Publications

Using 800 nm, 25-fs pulses from a mode locked Ti:Al2O3 laser, we have measured the ultrafast opticalreflectivity of MBE-grown, single-layer In0.4Ga0.6As/GaAs quantum-dot (QD) samples. The QDs are formed via two-stage Stranski-Krastanov growth: following initial InGaAs deposition at a relatively low temperature, self assembly of the QDs occurs during a subsequent higher temperature anneal. The capture times for free carriers excited in the surrounding GaAs (barrier layer) are as short as 140 fs, indicating capture efficiencies for the InGaAs quantum layer approaching 1. The capture rates are positively correlated with ...


The Density Factor In The Synthesis Of Carbon Nanotube Forest By Injection Chemical Vapor Deposition, Robert W. Call, C. Read, C Mart, T. C. Shen Jan 2012

The Density Factor In The Synthesis Of Carbon Nanotube Forest By Injection Chemical Vapor Deposition, Robert W. Call, C. Read, C Mart, T. C. Shen

Graduate Student Publications

Beneath the seeming straight-forwardness of growing carbon nanotube(CNT) forests by the injection chemical vapor deposition(CVD) method, control of the forest morphology on various substrates is yet to be achieved. Using ferrocene dissolved in xylene as the precursor, we demonstrate that the concentration of ferrocene and the injection rate of the precursor dictate the CNT density of these forests. However, CNT density will also be affected by the substrates and the growth temperature which determine the diffusion of the catalyst adatoms. The CNT growth rate is controlled by the temperature and chemical composition of the gases in the CVD ...


Flux Requirements For The Growth Of Rfeaso (R = Rare Earth) Superconductors, J.-Q. Yan, Brandt A. Jensen, Kevin W. Dennis, R. William Mccallum, Thomas A. Lograsso Feb 2011

Flux Requirements For The Growth Of Rfeaso (R = Rare Earth) Superconductors, J.-Q. Yan, Brandt A. Jensen, Kevin W. Dennis, R. William Mccallum, Thomas A. Lograsso

Ames Laboratory Publications

Millimeter-sized LaFeAsO single crystals have been successfully grown out of NaAs flux starting with (LaAs+1/2Fe2O3):20NaAs. The factors which allow the growth of these crystals out of NaAs but not out of many other fluxes, such as FeAs, have been investigated. X-ray powder diffraction found that NaAs synthesized for the growth ofRFeAsO superconductors has monoclinic LiAs structure. Thermal analysis confirmed that NaAs melts congruently at about 600 °C. The ability to extract RFeAsO crystals from this NaAs flux suggests that NaAs has a significant oxygen solubility, possibly due to the formation of ...


Co2 Diffusion Through Gelatin Experiment, Jennifer Welborn Jan 2011

Co2 Diffusion Through Gelatin Experiment, Jennifer Welborn

STEM Digital

An example of measuring lengths.


From Initial To Late Stages Of Epitaxial Thin Film Growth: Stm Analysis And Atomistic Or Coarsegrained Modeling, James W. Evans, Yong Han, Barış Ünal, Maozhi Li, K. J. Caspersen, Dapeng Jing, Anthony R. Layson, C. R. Stoldt, T. Duguet, Patricia A. Thiel Aug 2010

From Initial To Late Stages Of Epitaxial Thin Film Growth: Stm Analysis And Atomistic Or Coarsegrained Modeling, James W. Evans, Yong Han, Barış Ünal, Maozhi Li, K. J. Caspersen, Dapeng Jing, Anthony R. Layson, C. R. Stoldt, T. Duguet, Patricia A. Thiel

Chemistry Conference Papers, Posters and Presentations

Epitaxial thin film growth by vapor deposition or molecular beam epitaxy under ultra‐high vacuum conditions generally occurs in two stages: (i) nucleation and growth of well‐separated islands on the substrate; (ii) subsequent formation of a thicker continuous film with possible kinetic roughening. For homoepitaxial growth, two‐dimensional (2D) monolayer islands are formed during submonolayer deposition. Typically, the presence of a step‐edge barrier inhibits downward transport and leads to the formation of mounds (multilayer stacks of 2D islands) during multilayer growth. For heteroepitaxial growth, islands formed in the initial stages of deposition sometimes have a 2D monolayer structure ...


Influence Of Functionalized Fullerene Structure On Polymer Photovoltaic Degradation, Brian H. Johnson, Enaanake Allagoa, Robert L. Thomas, Gregory Stettler, Marianne Wallis, Justn H. Peel, Thorsteinn Adalsteinsson, Brian J. Mcnelis, Richard P. Barber Jr. Mar 2010

Influence Of Functionalized Fullerene Structure On Polymer Photovoltaic Degradation, Brian H. Johnson, Enaanake Allagoa, Robert L. Thomas, Gregory Stettler, Marianne Wallis, Justn H. Peel, Thorsteinn Adalsteinsson, Brian J. Mcnelis, Richard P. Barber Jr.

Physics

The time dependence of device performance has been measured for photocells using blends containing the conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with two different functionalized C60 electron acceptor molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory. Performance was characterized by the short-circuit current output of the devices, with the time dependence of PCBM samples typically degrading exponentially. Variations in the characteristic lifetime of the devices were observed to depend on the molar fraction of the electron acceptor molecules (calculated with ...


Diffusion Is Capable Of Translating Anisotropic Apoptosis Initiation Into A Homogeneous Execution Of Cell Death., Heinrich J. Huber, Maike A. Laussmann, Jochen Hm Prehn, Markus Rehm Feb 2010

Diffusion Is Capable Of Translating Anisotropic Apoptosis Initiation Into A Homogeneous Execution Of Cell Death., Heinrich J. Huber, Maike A. Laussmann, Jochen Hm Prehn, Markus Rehm

Physiology and Medical Physics Articles

BACKGROUND: Apoptosis is an essential cell death process throughout the entire life span of all metazoans and its deregulation in humans has been implicated in many proliferative and degenerative diseases. Mitochondrial outer membrane permeabilisation (MOMP) and activation of effector caspases are key processes during apoptosis signalling. MOMP can be subject to spatial coordination in human cancer cells, resulting in intracellular waves of cytochrome-c release. To investigate the consequences of these spatial anisotropies in mitochondrial permeabilisation on subsequent effector caspase activation, we devised a mathematical reaction-diffusion model building on a set of partial differential equations.

RESULTS: Reaction-diffusion modelling suggested that even ...


Low-Temperature Adsorption Of H2s On Ag(111), Selena M. Russell, Da-Jiang Liu, Maki Kawai, Yousoo Kim, Patricia A. Thiel Jan 2010

Low-Temperature Adsorption Of H2s On Ag(111), Selena M. Russell, Da-Jiang Liu, Maki Kawai, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

H2S forms a rich variety of structures on Ag(111) at low temperature and submonolayer coverage. The molecules decorate step edges, exist as isolated entities on terraces, and aggregate into clusters and islands, under various conditions. One type of island exhibits a (×)R25.3° unit cell. Typically, molecules in the clusters and islands are separated by about 0.4 nm, the same as the S–S separation in crystalline H2S. Density functional theory indicates that hydrogen-bonded clusters contain two types of molecules. One is very similar to an isolated adsorbed H2S molecule, with both ...


Study Of The Photoinduced Surface Relief Modulation In Photopolymers Caused By Illumination With A Gaussian Beam Of Light, Tzvetanka Babeva, Dana Mackey, Suzanne Martin, Izabela Naydenova, Vincent Toal Jan 2010

Study Of The Photoinduced Surface Relief Modulation In Photopolymers Caused By Illumination With A Gaussian Beam Of Light, Tzvetanka Babeva, Dana Mackey, Suzanne Martin, Izabela Naydenova, Vincent Toal

Articles

The formation of surface relief profile in photopolymerisable systems when illuminated with a focused beam of light is simulated numerically using a two-way diffusion model that takes account both for monomer and short polymer chains diffusion. The concentration and spatial distribution dynamics of monomer and short and long polymer chains are calculated. The surface profile is obtained from calculated components concentrations considering different densities of monomer and polymer. The influence of the illumination time, intensity and spot diameter on the surface profiles dynamics is discussed. A good agreement between the calculated and the experimentally measured profiles is observed thus demonstrating ...


Simple Approximations For Condensational Growth, A. B. Kostinski Feb 2009

Simple Approximations For Condensational Growth, A. B. Kostinski

Department of Physics Publications

A simple geometric argument relating to the liquid water content of clouds is given. The phase relaxation time and the nature of the quasi-steady approximation for the diffusional growth of cloud drops are elucidated directly in terms of water vapor concentration. Spatial gradients of vapor concentration, inherent in the notion of quasi-steady growth, are discussed and we argue for an occasional reversal of the traditional point of view: rather than a drop growing in response to a given supersaturation, the observed values of the supersaturation in clouds are the result of a vapor field adjusting to droplet growth. Our perspective ...


Surface Relief Profile Of Photopolymerisable Systems In A Single Illuminated Spot, Tsvetanka Babeva, Dana Mackey, Izabela Naydenova, Suzanne Martin, Vincent Toal Jan 2009

Surface Relief Profile Of Photopolymerisable Systems In A Single Illuminated Spot, Tsvetanka Babeva, Dana Mackey, Izabela Naydenova, Suzanne Martin, Vincent Toal

Conference Papers

The formation of surface relief profile in photopolymerisable systems when illuminated with a focused beam of light is simulated numerically using a two-way diffusion model that accounts both for monomer and short polymer chains diffusion. The concentration and spatial distribution dynamics of monomer, short and long polymer chains are calculated. It is assumed that the surface profile is a linear combination of monomer and polymer concentration with appropriate coefficients accounting for polymer shrinkage. A good agreement between the calculated and the experimentally measured profiles is observed thus demonstrating the successful application of the two way diffusion in modeling this system.


Compositional Stability Of Fept Nanoparticles On Sio2/Si During Annealing, Richard R. Vanfleet, B. Yao, R. V. Petrova, K. R. Coffey Apr 2006

Compositional Stability Of Fept Nanoparticles On Sio2/Si During Annealing, Richard R. Vanfleet, B. Yao, R. V. Petrova, K. R. Coffey

Faculty Publications

The loss of Fe due to oxidation or diffusion into the substrate can prevent the successful preparation of well-ordered, stoichiometric, FePt nanoparticles. In this work we report the composition changes during annealing observed for small (<10 nm) FePt nanoparticles on thermally grown SiO2 layers on Si wafer substrates. Additionally, we describe the use of a controlled reducing gas mixture, Ar+H2+H2O, to reduce the loss of Fe.


Two Way Diffusion Model For The Recording Mechanism In A Self-Developing Dry Acrylamide Photopolymer, Suzanne Martin, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Vincent Toal Jan 2006

Two Way Diffusion Model For The Recording Mechanism In A Self-Developing Dry Acrylamide Photopolymer, Suzanne Martin, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Vincent Toal

Conference Papers

In our most recent study [1] diffusion constants were measured in the simplified monoacrylamide version of a dry acrylamide based photopolymer holographic recording material developed in the Centre for Industrial and Engineering Optics. In this paper we report diffusion constants for the commonly used photopolymer formulation, which also contains the crosslinker bisacrylamide. A physical model for the recording mechanism is proposed which explains the two way diffusion observed in both systems, and is in agreement with much of the previously observed behaviour of the material, particularly in regard to dependence of diffraction efficiency growth on spatial frequency and persistence of ...


Adiabatic-Nonadiabatic Transition In The Diffusive Hamiltonian Dynamics Of A Classical Holstein Polaron, Alex A. Silvius, Paul Ernest Parris, Stephan De Bièvre Jan 2006

Adiabatic-Nonadiabatic Transition In The Diffusive Hamiltonian Dynamics Of A Classical Holstein Polaron, Alex A. Silvius, Paul Ernest Parris, Stephan De Bièvre

Physics Faculty Research & Creative Works

We study the Hamiltonian dynamics of a free particle injected onto a chain containing a periodic array of harmonic oscillators in thermal equilibrium. The particle interacts locally with each oscillator, with an interaction that is linear in the oscillator coordinate and independent of the particle's position when it is within a finite interaction range. At long times the particle exhibits diffusive motion, with an ensemble averaged mean-squared displacement that is linear in time. The diffusion constant at high temperatures follows a power law D~T 5/2 for all parameter values studied. At low temperatures particle transport changes to ...


Modeling Of Island Formation During Submonolayer Deposition: A Stochastic Geometry-Based Simulation Approach, Maozhi Li, James W. Evans Jan 2005

Modeling Of Island Formation During Submonolayer Deposition: A Stochastic Geometry-Based Simulation Approach, Maozhi Li, James W. Evans

Physics and Astronomy Publications

Homogeneous nucleation and growth of two-dimensional islands during submonolayer deposition has been analyzed extensively by kinetic Monte Carlo (KMC) simulation of atomistic models and more recently by Burton--Cabrera--Frank-type continuum formulations for diffusion and aggregation of the deposited adatoms. Here, we develop an alternative geometry-based simulation (GBS) approach. This approach replaces an explicit treatment of adatom diffusion (either within an atomistic or continuum framework) with a formulation based on the stochastic geometry of "depletion zones" or "capture zones" surrounding islands. We consider models with a prescribed critical size, i, above which islands are stable. For canonical models with small i, we ...


From Atomic Scale Reactant Ordering To Mesoscale Reaction Front Propagation: Co Oxidation On Pd(100), Da-Jiang Liu, James W. Evans Nov 2004

From Atomic Scale Reactant Ordering To Mesoscale Reaction Front Propagation: Co Oxidation On Pd(100), Da-Jiang Liu, James W. Evans

Mathematics Publications

We utilize a heterogeneous coupled lattice-gas (HCLG) approach to connect the length scales from a realistic atomistic description of surface reactions to the associated mesoscale spatiotemporal behavior. This method is applied to describe reaction front structure in a model for CO oxidation on Pd(100) which incorporates complex ordering of CO and O adlayers, and a precise treatment of the chemical diffusion for interacting CO adlayers in an environment of coadsorbed O.