Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

In Situ Observation Of Antisite Defect Formation During Crystal Growth, Matthew J. Kramer, Mikhail I. Mendelev, Ralph E. Napolitano Dec 2010

In Situ Observation Of Antisite Defect Formation During Crystal Growth, Matthew J. Kramer, Mikhail I. Mendelev, Ralph E. Napolitano

Materials Science and Engineering Publications

In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.


From Initial To Late Stages Of Epitaxial Thin Film Growth: Stm Analysis And Atomistic Or Coarsegrained Modeling, James W. Evans, Yong Han, Barış Ünal, Maozhi Li, K. J. Caspersen, Dapeng Jing, Anthony R. Layson, C. R. Stoldt, T. Duguet, Patricia A. Thiel Aug 2010

From Initial To Late Stages Of Epitaxial Thin Film Growth: Stm Analysis And Atomistic Or Coarsegrained Modeling, James W. Evans, Yong Han, Barış Ünal, Maozhi Li, K. J. Caspersen, Dapeng Jing, Anthony R. Layson, C. R. Stoldt, T. Duguet, Patricia A. Thiel

Chemistry Conference Papers, Posters and Presentations

Epitaxial thin film growth by vapor deposition or molecular beam epitaxy under ultra‐high vacuum conditions generally occurs in two stages: (i) nucleation and growth of well‐separated islands on the substrate; (ii) subsequent formation of a thicker continuous film with possible kinetic roughening. For homoepitaxial growth, two‐dimensional (2D) monolayer islands are formed during submonolayer deposition. Typically, the presence of a step‐edge barrier inhibits downward transport and leads to the formation of mounds (multilayer stacks of 2D islands) during multilayer growth. For heteroepitaxial growth, islands formed in the initial stages of deposition sometimes have a 2D monolayer structure ...


Thermodynamic Limits Of Crystallization And The Prediction Of Glass Formation Tendency, Yongxin Yao, Ralph E. Napolitano, Cai-Zhuang Wang, Kai-Ming Ho Jun 2010

Thermodynamic Limits Of Crystallization And The Prediction Of Glass Formation Tendency, Yongxin Yao, Ralph E. Napolitano, Cai-Zhuang Wang, Kai-Ming Ho

Materials Science and Engineering Publications

We have calculated the T0 curves for several Al-rare-earth binary alloys to assess the importance of the transport-based resistance to crystallization in the overall glass formation process and the general effectiveness of thermodynamic prediction of glass-forming ability. Our results show that the experimentally observed glass-forming compositions for Al-(Ce, Gd, Ho, Nd, Y, Dy) alloys strongly correlate with the composition range bounded by the T0curves associated with the relevant crystalline phases. This indicates that sluggish material transport, together with the tendency for clustering and other types of ordering at medium-range scale, is a key factor governing glass formation in these ...


Periodic Step Arrays On The Aperiodic I-Al-Pd-Mn Quasicrystal Surface At High Temperature, Y. Sato, Barış Ünal, Thomas A. Lograsso, Patricia A. Thiel, A. K. Schmid, T. Duden, N. C. Bartelt, K. F. Mccarty Jan 2010

Periodic Step Arrays On The Aperiodic I-Al-Pd-Mn Quasicrystal Surface At High Temperature, Y. Sato, Barış Ünal, Thomas A. Lograsso, Patricia A. Thiel, A. K. Schmid, T. Duden, N. C. Bartelt, K. F. Mccarty

Chemistry Publications

We have observed the configuration and motion of surface steps on the aperiodic icosahedral (i-) Al-Pd-Mn quasicrystal using low-energy electron microscopy and scanning tunneling microscopy. As the quasicrystal is cooled from high temperature, bulk vacancies migrate to the surface causing the surface to be etched. Surprisingly, this etching occurs by two types of steps with different heights moving in different directions with different velocities. The steady-state surface morphology is a uniformly spaced rhomboidal step network. This network requires that the layer stacking near the surface deviates from the bulk quasicrystal stacking.


Formation And Coarsening Of Ag(110) Bilayer Islands On Nial(110): Stm Analysis And Atomistic Lattice-Gas Modeling, Yong Han, Barış Ünal, Dapeng Jing, Feili Qin, Cynthia J. Jenks, Da-Jiang Liu, Patricia A. Thiel, James W. Evans Jan 2010

Formation And Coarsening Of Ag(110) Bilayer Islands On Nial(110): Stm Analysis And Atomistic Lattice-Gas Modeling, Yong Han, Barış Ünal, Dapeng Jing, Feili Qin, Cynthia J. Jenks, Da-Jiang Liu, Patricia A. Thiel, James W. Evans

Chemistry Publications

Scanning tunneling microscopy analysis of the initial stages of film growth during deposition of Ag on NiAl(110) reveals facile formation of bilayer Ag(110) islands at temperatures of 130 K and above. Annealing subsequent to deposition at 130 K induces coarsening of the bilayer island distribution. The thermodynamic driving force for bilayer island formation reflects a lower relative surface energy for films of even layer thicknesses. This feature derives from quantum size effects due to electron confinement in the Ag film. The kinetics of island formation and relaxation is controlled by terrace and edge-diffusion barriers, detachment barriers, interlayer diffusion ...


Semicrystalline Woodpile Photonic Crystals Without Complicated Alignment Via Soft Lithography, Jae-Hwang Lee, Ping Kuang, Wai Y. Leung, Yong-Sung Kim, Joong Mok Park, Henry Kang, Kristen P. Constant, Kai-Ming Ho Jan 2010

Semicrystalline Woodpile Photonic Crystals Without Complicated Alignment Via Soft Lithography, Jae-Hwang Lee, Ping Kuang, Wai Y. Leung, Yong-Sung Kim, Joong Mok Park, Henry Kang, Kristen P. Constant, Kai-Ming Ho

Materials Science and Engineering Publications

We report the fabrication and characterization of woodpile photonic crystals with up to 12 layers through titania nanoparticle infiltration of a polymer template made by soft lithography. Because the complicated alignment in the conventional layer-by-layer fabrication associated with diamondlike symmetry is replaced by a simple 90° alignment, the fabricatedphotonic crystal has semicrystalline phase. However, the crystal performs similarly to a perfectly aligned crystal for the light propagation integrated from the surface normal to 30° at the main photonic band gap.


Low-Temperature Adsorption Of H2s On Ag(111), Selena M. Russell, Da-Jiang Liu, Maki Kawai, Yousoo Kim, Patricia A. Thiel Jan 2010

Low-Temperature Adsorption Of H2s On Ag(111), Selena M. Russell, Da-Jiang Liu, Maki Kawai, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

H2S forms a rich variety of structures on Ag(111) at low temperature and submonolayer coverage. The molecules decorate step edges, exist as isolated entities on terraces, and aggregate into clusters and islands, under various conditions. One type of island exhibits a (×)R25.3° unit cell. Typically, molecules in the clusters and islands are separated by about 0.4 nm, the same as the S–S separation in crystalline H2S. Density functional theory indicates that hydrogen-bonded clusters contain two types of molecules. One is very similar to an isolated adsorbed H2S molecule, with both ...


Adsorbate-Enhanced Transport Of Metals On Metal Surfaces: Oxygen And Sulfur On Coinage Metals, Patricia A. Thiel, Mingmin Shen, Da-Jiang Liu, James W. Evans Jan 2010

Adsorbate-Enhanced Transport Of Metals On Metal Surfaces: Oxygen And Sulfur On Coinage Metals, Patricia A. Thiel, Mingmin Shen, Da-Jiang Liu, James W. Evans

Chemistry Publications

Coarsening (i.e., ripening) of single-atom-high, metal homoepitaxial islands provides a useful window on the mechanism and kinetics of mass transport at metal surfaces. This article focuses on this type of coarsening on the surfaces of coinage metals (Cu, Ag, Au), both clean and with an adsorbed chalcogen (O, S) present. For the clean surfaces, three aspects are summarized: (1) the balance between the two major mechanisms—Ostwald ripening (the most commonly anticipated mechanism) and Smoluchowski ripening—and how that balance depends on island size; (2) the nature of the mass transport agents, which are metal adatoms in almost all ...


Variation Of Growth Morphology With Chemical Composition Of Terraces: Ag On A Twofold Surface Of A Decagonal Al-Cu-Co Quasicrystal, T. Duguet, Barış Ünal, Yong Han, James W. Evans, J. Ledieu, Cynthia J. Jenks, J.-M. Dubois, V. Fournée, Patricia A. Thiel Jan 2010

Variation Of Growth Morphology With Chemical Composition Of Terraces: Ag On A Twofold Surface Of A Decagonal Al-Cu-Co Quasicrystal, T. Duguet, Barış Ünal, Yong Han, James W. Evans, J. Ledieu, Cynthia J. Jenks, J.-M. Dubois, V. Fournée, Patricia A. Thiel

Chemistry Publications

Growth of Ag thin films on the twofold surface of a decagonal Al-Cu-Co quasicrystal is characterized by scanning tunneling microscopy, at different temperatures, and for coverages ranging from submonolayer to 11 monolayers. From prior work, three types of clean surface terraces are known to exist. By correlation with a bulk structural model, the major difference between them lies in their transition-metal (TM) content, two being aluminum-rich (0 and 15 at. % TM) and one being TM-rich (40–50 at. % TM). The present article focuses on understanding the difference between Ag film morphologies on these terminations, in terms of their chemical content ...


Lattice Expansion In Islands Stabilized By Electron Confinement: Ag On Si(111)-7×7, Barış Ünal, Alex Belianinov, Patricia A. Thiel, Michael C. Tringides Jan 2010

Lattice Expansion In Islands Stabilized By Electron Confinement: Ag On Si(111)-7×7, Barış Ünal, Alex Belianinov, Patricia A. Thiel, Michael C. Tringides

Chemistry Publications

Ag on Si(111)-7×7 was one of the first systems where height selection of metal islands was attributed to electron confinement, i.e., stabilization of selected heights through a quantum size effect (QSE). However, it has been puzzling how the requisite electron standing waves can form, because the Fermi level EF (along the growth [111] direction) is within the gap for bulk Ag. With detailed experiments over a wide coverage and temperature range, we show that a large increase of 12% is present in the interlayer spacing within the bilayer islands. This can shift EF below ...


Islands And Holes As Measures Of Mass Balance In Growth Of The (√3×√3)R30° Phase Of Ag On Si(111), Alex Belianinov, Barış Ünal, Ning Lu, Min Ji, Kai-Ming Ho, Cai-Zhuang Wang, Michael C. Tringides, Patricia A. Thiel Jan 2010

Islands And Holes As Measures Of Mass Balance In Growth Of The (√3×√3)R30° Phase Of Ag On Si(111), Alex Belianinov, Barış Ünal, Ning Lu, Min Ji, Kai-Ming Ho, Cai-Zhuang Wang, Michael C. Tringides, Patricia A. Thiel

Chemistry Publications

It is well known that conversion of Si(111)-(7×7) into the (√3×√3)R30° phase of adsorbed Ag requires a change in the Si density, and causes formation of islands and holes at the surface. By mass balance, the ratio of areas of islands and holes (RIH) should be approximately 1. However, we find that the ratio is significantly higher, depending on preparation conditions. A possible explanation would be that there are different types of (√3×√3)R30° structures. However, neither scanning tunneling microscopy nor density-functional theory (implemented as a genetic algorithm search) supports this explanation. We ...


Nanoscale “Quantum” Islands On Metal Substrates: Microscopy Studies And Electronic Structure Analyses, Yong Han, Barış Ünal, Dapeng Jing, Patricia A. Thiel, James W. Evans Jan 2010

Nanoscale “Quantum” Islands On Metal Substrates: Microscopy Studies And Electronic Structure Analyses, Yong Han, Barış Ünal, Dapeng Jing, Patricia A. Thiel, James W. Evans

Chemistry Publications

Confinement of electrons can occur in metal islands or in continuous films grown heteroepitaxially upon a substrate of a different metal or on a metallic alloy. Associated quantum size effects (QSE) can produce a significant height-dependence of the surface free energy for nanoscale thicknesses of up to 10–20 layers. This may suffice to induce height selection during film growth. Scanning STM analysis has revealed remarkable flat-topped or mesa-like island and film morphologies in various systems. We discuss in detail observations of QSE and associated film growth behavior for Pb/Cu(111), Ag/Fe(100), and Cu/fcc-Fe/Cu(100 ...