Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Physics

First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma Dec 2019

First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

Bismuth iodide Bi4I4 exhibits intricate crystal structures and topological insulating states that are highly susceptible to influence by environments, making its physical properties highly tunable by external conditions. In this work, we study the evolution of structural and electronic properties of Bi4I4 at high pressure using an advanced structure search method in conjunction with first-principles calculations. Our results indicate that the most stable ambient-pressure monoclinic α−Bi4I4 phase in C2/m symmetry transforms to a trigonal P31c structure (ɛ−Bi4I4) at 8.4 GPa, then to a tetragonal P4/mmm structure (ζ−Bi4I4) above 16.6 GPa. In contrast to the semiconducting nature of ambient-pressure Bi4I4, the …


Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Nov 2019

Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Research

Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound …


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Research

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and …


Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta Sep 2019

Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta

Chemistry and Biochemistry Faculty Research

Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle …


Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang Aug 2019

Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang

Physics & Astronomy Faculty Research

The FeSe-based superconductors exhibit a wide range of critical temperature Tcunder a variety of material and physical conditions, but extensive studies to date have yet to produce a consensus view on the underlying mechanism. Here we report on a systematic Raman-scattering work on intercalated FeSe superconductors Lix(NH3)yFe2Se2 and (Li,Fe)OHFeSe compared to pristine FeSe. All three crystals show an anomalous power-law temperature dependence of phonon linewidths, deviating from the standard anharmonic behavior. This intriguing phenomenon is attributed to electron-phonon coupling effects enhanced by electron correlation, as evidenced by the evolution of the A1g Raman mode. Meanwhile, an analysis of the B1g …


Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Research

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang Jul 2019

The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang

Physics & Astronomy Faculty Research

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding …


A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle Jul 2019

A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle

Physics & Astronomy Faculty Research

Reported is an experimental and computational investigation of the low temperature heat capacity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2. The experimentally measured heat capacity at T... (See full abstract in article).


Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen Jul 2019

Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen

Physics & Astronomy Faculty Research

Topological semimetals are a fascinating class of quantum materials that possess extraordinary electronic and transport properties. These materials have attracted great interests in recent years for their fundamental significance and potential device applications. There have been intensive studies suggested that three-dimensional graphene networks support topological semimetals with two types of continuous nodal lines: one is to form closed nodal rings in Brillouin zone and the other ones traversing the whole Brillouin zone to be periodically connected. Carbon has negligible spin-orbit coupling, non-magnetism and great diversity of allotropes, which makes it very promising in realizing topological nodal line semimetals. Here we …


Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil Jun 2019

Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil

Chemistry and Biochemistry Faculty Research

Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed.


How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei Jun 2019

How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei

Physics & Astronomy Faculty Research

The origin of fast radio bursts (FRBs) is still unknown. Multiwavelength observations during or shortly after the FRB phase would be essential to identify the counterpart of an FRB and to constrain its progenitor and environment. In this work, we investigate the brightness of the “fast optical bursts” (FOBs) associated with FRBs and the prospects of detecting them. We investigate several inverse Compton (IC) scattering processes that might produce an FOB, including both the one-zone and two-zone models. We also investigate the extension of the same mechanism of FRB emission to the optical band. We find that a detectable FOB …


The Purported Square Ice In Bilayer Graphene In A Nanoscale, Monolayer Object, Tod A. Pascal, Craig P. Schwartz, Keith V. Lawler, David Prendergast Jun 2019

The Purported Square Ice In Bilayer Graphene In A Nanoscale, Monolayer Object, Tod A. Pascal, Craig P. Schwartz, Keith V. Lawler, David Prendergast

Chemistry and Biochemistry Faculty Research

The phase diagram of water is complex, and interfacial effects can stabilize unusual structures at the nanoscale. Here, we employ bond order accelerated molecular dynamics simulations to show that upon encapsulation within bilayer graphene, water can spontaneously adopt a two-dimensional (monomolecular) layer of “square ice” at ambient conditions, instead of an encapsulated water droplet. Free energy calculations show that this motif is thermodynamically stable up to diameters of approximately 15 nm due to enhanced hydrogen bonding and favorable binding to the graphene sheets. Entropic losses due to solidification and reduced graphene–graphene binding enthalpy are opposing thermodynamic forces that conspire to …


Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang Jun 2019

Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang

Physics & Astronomy Faculty Research

van der Waals (vdW) layered compounds provided a fruitful research platform for the realization of superconductivity. However, a vdW layered superconductor with a high transition temperature (Tc) at ambient conditions is still rare. Here, using variable-composition evolutionary structure predictions, we systematically explored the stable compounds in the P-S system up to 20 GPa. Opposed to the complex stoichiometries at ambient conditions, only one compound, PS2, is predicted to be thermodynamically stable above 8 GPa. Strikingly, PS2 is a vdW layered material isostructural to 3R−MoS2 exhibiting a predicted Tc of around 11 K at ambient pressure, both in the bulk and …


Controlling The Stereodynamics Of Cold Molecular Collisions, Balakrishnan Naduvalath, J. F. E. Croft, Meng Huang, Hua Guo May 2019

Controlling The Stereodynamics Of Cold Molecular Collisions, Balakrishnan Naduvalath, J. F. E. Croft, Meng Huang, Hua Guo

Chemistry and Biochemistry Faculty Research

We report numerically-exact quantum scattering calculations for low-energy collisions of quantum-state prepared HD with H2. Excellent agreement is obtained with recent measurements of Perreault et al. for the angular distribution of scattered HD at a collision energy of 1 K. By state-preparation of the HD molecules, control of the angular distribution of scattered HD was demonstrated. The stereo-dynamic control is achieved by the ability to choose a single or a coherent superposition of quantum states. We present a first-principles simulation of the experiment which enables us to attribute the main features of the observed angular distribution to a single L …


Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang May 2019

Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang

Physics & Astronomy Faculty Research

A computational methodology based on ab initio evolutionary algorithms and spin-polarized density functional theory was developed to predict two-dimensional magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A metastable borophene with nonzero thickness is an antiferromagnetic semiconductor from first-principles calculations, and can be further tuned into a half-metal by finite electron doping. In this borophene, the buckling and coupling among three atomic layers are not only responsible for magnetism, but also result in an out-of-plane negative Poisson's ratio under uniaxial tension, making it the first elemental material possessing auxetic and magnetic properties …


Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang Mar 2019

Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang

Physics & Astronomy Faculty Research

We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs support …


Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst Feb 2019

Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst

Physics & Astronomy Faculty Research

By irradiating a pressurized mixture of a fluorine-bearing compound (XeF2XeF2) and HgF2HgF2 with synchrotron hard x-rays ... (See full text for complete abstract)


Ternary Inorganic Electrides With Mixed Bonding, Junjie Wang, Qiang Zhu, Zhenhai Wang, Hideo Hosono Feb 2019

Ternary Inorganic Electrides With Mixed Bonding, Junjie Wang, Qiang Zhu, Zhenhai Wang, Hideo Hosono

Physics & Astronomy Faculty Research

A high-throughput screening based on first-principles calculations was performed to search for new ternary inorganic electrides. From the available materials database, we identified three new thermodynamically stable materials (Li12Mg3Si4, NaBa2O, and Ca5Ga2N4) as potential electrides made by main group elements, in addition to the well known mayenite based electride (C12A7:e−). Different from those conventional inorganic electrides in which the excess electrons play only the role of anions, the three new materials, resembling the electrides found in simple metals under high pressure, possess mixed ionic and metallic bonding. The interplay between two competing mechanisms, together with the different crystal packing motifs, …


A Loud Quasi-Periodic Oscillation After A Atar Is Disrupted By A Massive Black Hole, Dheeraj R. Pasham, Ronald A. Remillard, P. Chris Fragile, Alessia Franchini, Nicholas C. Stone, Giuseppe Lodato, Jeroen Homan, Deepto Chakrabarty, Frederick K. Baganoff, James F. Steiner, Eric R. Coughlin, Nishanth R. Pasham Feb 2019

A Loud Quasi-Periodic Oscillation After A Atar Is Disrupted By A Massive Black Hole, Dheeraj R. Pasham, Ronald A. Remillard, P. Chris Fragile, Alessia Franchini, Nicholas C. Stone, Giuseppe Lodato, Jeroen Homan, Deepto Chakrabarty, Frederick K. Baganoff, James F. Steiner, Eric R. Coughlin, Nishanth R. Pasham

Physics & Astronomy Faculty Research

The tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li. Assuming the black hole mass indicated by host galaxy scaling relations, these observations imply that the periodicity originates from close to the event horizon and that the black hole is rapidly spinning. Our findings demonstrate that tidal disruption events can generate quasi-periodic oscillations that encode information about the physical …


Cob6 Monolayer: A Robust Two-Dimensional Ferromagnet, Xiao Tang, Weiguo Sun, Yuantong Gu, Cheng Lu, Liangzhi Kou, Changfeng Chen Jan 2019

Cob6 Monolayer: A Robust Two-Dimensional Ferromagnet, Xiao Tang, Weiguo Sun, Yuantong Gu, Cheng Lu, Liangzhi Kou, Changfeng Chen

Physics & Astronomy Faculty Research

Two-dimensional (2D) magnetic materials are essential to developing high-performance spintronic devices. Recent experimental discoveries of several atomic thin 2D ferromagnetic materials have stimulated great interest in further exploring this fascinating class of materials. Here, combining an advanced crystal structure search method and extensive first-principles energetic and dynamic calculations, we have identified a planar CoB6 monolayer as a stable 2D ferromagnet. We show that the ferromagnetic ground state of the CoB6 monolayer remains robust in the ambient environment, and the magnetic stability and moment can be remarkably enhanced and tuned by external strain. Moreover, we propose feasible synthesis routes for the …