Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2015

Computer Sciences

Institution
Keyword
Publication

Articles 1 - 22 of 22

Full-Text Articles in Physics

Qubit Measurement Error From Coupling With A Detuned Neighbor In Circuit Qed, Mostafa Khezri, Justin Dressel, Alexander N. Korotkov Nov 2015

Qubit Measurement Error From Coupling With A Detuned Neighbor In Circuit Qed, Mostafa Khezri, Justin Dressel, Alexander N. Korotkov

Mathematics, Physics, and Computer Science Faculty Articles and Research

In modern circuit QED architectures, superconducting transmon qubits are measured via the state-dependent phase and amplitude shift of a microwave field leaking from a coupled resonator. Determining this shift requires integrating the field quadratures for a nonzero duration, which can permit unwanted concurrent evolution. Here we investigate such dynamical degradation of the measurement fidelity caused by a detuned neighboring qubit. We find that in realistic parameter regimes, where the qubit ensemble-dephasing rate is slower than the qubit-qubit detuning, the joint qubit-qubit eigenstates are better discriminated by measurement than the bare states. Furthermore, we show that when the resonator leaks much …


Infinite-Noise Criticality: Nonequilibrium Phase Transitions In Fluctuating Environments, Thomas Vojta, José A. Hoyos Nov 2015

Infinite-Noise Criticality: Nonequilibrium Phase Transitions In Fluctuating Environments, Thomas Vojta, José A. Hoyos

Physics Faculty Research & Creative Works

We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical …


Comparison Of Experimental And Theoretical Electron-Impact-Ionization Triple-Differential Cross Sections For Ethane, Esam Ali, Kate Nixon, Andrw Murray, Chuangang Ning, James Colgan, Don H. Madison Oct 2015

Comparison Of Experimental And Theoretical Electron-Impact-Ionization Triple-Differential Cross Sections For Ethane, Esam Ali, Kate Nixon, Andrw Murray, Chuangang Ning, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O, NH3, CH4). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p-type "peanut" shape. In this work, we examine ethane (C2H6) which is a molecule that has two large atoms surrounded by H nuclei, so that …


Evidence For Unnatural-Parity Contributions To Electron-Impact Ionization Of Laser-Aligned Atoms, G. S. J. Armstrong, J. Colgan, M. S. Pindzola, S. Amami, Don H. Madison, J. Pursehouse, K. L. Nixon, A. J. Murray Sep 2015

Evidence For Unnatural-Parity Contributions To Electron-Impact Ionization Of Laser-Aligned Atoms, G. S. J. Armstrong, J. Colgan, M. S. Pindzola, S. Amami, Don H. Madison, J. Pursehouse, K. L. Nixon, A. J. Murray

Physics Faculty Research & Creative Works

Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this work we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. We demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionization from …


Mapping Open Water Bodeis With Optical Remote Sensing, Mary Ellen O'Donnell, Erika Podest Aug 2015

Mapping Open Water Bodeis With Optical Remote Sensing, Mary Ellen O'Donnell, Erika Podest

STAR Program Research Presentations

There is interest in mapping open water bodies using remote sensing data. Coverage and persistence of open water is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. The presence and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. Predicting the risk of mosquito caused disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions for deployment of preventative measures and control resources. This study, which will try to map open …


Anharmonic Properties In Mg₂X (X= C, Si, Ge, Sn, Pb) From First-Principles Calculations, Aleksandr V. Chernatynskiy, Simon R. Phillpot Aug 2015

Anharmonic Properties In Mg₂X (X= C, Si, Ge, Sn, Pb) From First-Principles Calculations, Aleksandr V. Chernatynskiy, Simon R. Phillpot

Physics Faculty Research & Creative Works

Thermal conductivity reduction is one of the potential routes to improve the performance of thermoelectric materials. However, detailed understanding of the thermal transport of many promising materials is still missing. In this paper, we employ electronic-structure calculations at the level of density functional theory to elucidate thermal transport properties of the Mg2X (X=C, Si, Ge, Sn, and Pb) family of compounds, which includes Mg2Si, a material already identified as a potential thermoelectric. All these materials crystallize into the same antifluorite structure. Systematic trends in the anharmonic properties of these materials are presented and examined. Our calculations …


Interference Effects For Intermediate Energy Electron-Impact Ionization Of H₂ And N₂ Molecules, Zehra Nur Ozer, Hari Chaluvadi, Don H. Madison, Mevlut Dogan Jul 2015

Interference Effects For Intermediate Energy Electron-Impact Ionization Of H₂ And N₂ Molecules, Zehra Nur Ozer, Hari Chaluvadi, Don H. Madison, Mevlut Dogan

Physics Faculty Research & Creative Works

We have studied electron impact ionization of H2 and N2 molecules at intermediate energies to look for possible two center interference effects experimentally and theoretically. Here we report a study of the interference factor I for 250 eV electron-impact ionization. The experimental measurements are performed using a crossed-beam-type electron-electron coincidence spectrometer and theoretical calculations are obtained using the Molecular Three Body Distorted Wave Approximation (M3DW). We found that the I-factor demonstrated strong evidence for two-center interference effects for both H2 and N2. We also found that the I-factor is more sensitive to projectile angular scans …


Spectrally-Resolved Imaging Of The Transverse Modes In Multimode Vcsels, Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette, Paul O. Leisher Jun 2015

Spectrally-Resolved Imaging Of The Transverse Modes In Multimode Vcsels, Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette, Paul O. Leisher

Rose-Hulman Undergraduate Research Publications

Vertical-cavity surface-emitting lasers (VCSELs) enable a range of applications such as data transmission, trace sensing, atomic clocks, and optical mice. For many of these applications, the output power and beam quality are both critical (i.e. high output power with good beam quality is desired). Multi-mode VCSELs offer much higher power than single-mode devices, but this comes at the expense of lower beam quality. Directly observing the resolved mode structure of multi-mode VCSELs would enable engineers to better understand the underlying physics and help them to develop multi-mode devices with improved beam quality. In this work, a low-cost, high-resolution (<3 >pm) …


Erratum: Theoretical And Experimental (E,2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms [Physical Review A 90, 062707 (2014)], Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison Jun 2015

Erratum: Theoretical And Experimental (E,2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms [Physical Review A 90, 062707 (2014)], Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have recently reported a theoretical and experimental study of electron-impact ionization of laser-aligned magnesium. Results were presented for both ionization of the ground state, as well as for laser-aligned atoms in the 3p state. For ionization from the 3p state, theoretical results were presented using the distorted wave Born (DWBA) and three-body distorted wave (3DW) approximations. Unfortunately, after publication we learned that the theoretical results were incorrect due to one of the arrays in the computer code dimensioned too small. The figures affected by this error are Figs. 3–5 in the original paper. The present Figs. 3–5 …


Emerging Criticality In The Disordered Three-Color Ashkin-Teller Model, Qiong Zhu, Xin Wan, Rajesh Narayanan, José A. Hoyos, Thomas Vojta Jun 2015

Emerging Criticality In The Disordered Three-Color Ashkin-Teller Model, Qiong Zhu, Xin Wan, Rajesh Narayanan, José A. Hoyos, Thomas Vojta

Physics Faculty Research & Creative Works

We study the effects of quenched disorder on the first-order phase transition in the two-dimensional three-color Ashkin-Teller model by means of large-scale Monte Carlo simulations. We demonstrate that the first-order phase transition is rounded by the disorder and turns into a continuous one. Using a careful finite-size-scaling analysis, we provide strong evidence for the emerging critical behavior of the disordered Ashkin-Teller model to be in the clean two-dimensional Ising universality class, accompanied by universal logarithmic corrections. This agrees with perturbative renormalization-group predictions by Cardy. As a byproduct, we also provide support for the strong-universality scenario for the critical behavior of …


Generating Random Walks And Polygons With Thickness In Confinement, Sai Sindhuja Veeramachaneni May 2015

Generating Random Walks And Polygons With Thickness In Confinement, Sai Sindhuja Veeramachaneni

Masters Theses & Specialist Projects

Algorithms to generate walks (chains of unit-length, freely-jointed segments) and polygons (closed walks) in spherical confinements have been developed in the last few years. These algorithms generate polygons inside spherical confinement based on their mathematically derived probability distributions. The generated polygons do not occupy any volume { although that would be useful for some applications. This thesis investigates how to generate walks and polygons which occupy some volume in spherical confinement. More specifically, in this thesis, existing methods described in the literature have been studied and implemented to generate walks and polygons in confinement. Additionally, these methods were adapted to …


Analysis Of Random Metric Spaces Explains Emergence Phenomenon And Suggests Discreteness Of Physical Space, Olga Kosheleva, Vladik Kreinovich Apr 2015

Analysis Of Random Metric Spaces Explains Emergence Phenomenon And Suggests Discreteness Of Physical Space, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

In many practical situations, systems follow the pattern set by the second law of thermodynamics: they evolve from an organized inhomogeneous state into a homogeneous structure-free state. In many other practical situations, however, we observe the opposite emergence phenomenon: in an originally homogeneous structure-free state, an inhomogeneous structure spontaneously appears. In this paper, we show that the analysis of random metric spaces provides a possible explanation for this phenomenon. We also show that a similar analysis supports space-time models in which proper space is discrete.


Classical Description Of H(1s) And H* (N=2) For Cross-Section Calculations Relevant To Charge-Exchange Diagnostics, N. D. Cariatore, Sebastian Otranto, Ronald E. Olson Apr 2015

Classical Description Of H(1s) And H* (N=2) For Cross-Section Calculations Relevant To Charge-Exchange Diagnostics, N. D. Cariatore, Sebastian Otranto, Ronald E. Olson

Physics Faculty Research & Creative Works

In this work, we introduce a classical trajectory Monte Carlo (CTMC) methodology, specially conceived to provide a more accurate representation of charge-exchange processes between highly charged ions and H(1s) and H* (n=2). These processes are of particular relevance in power fusion reactor programs, for which charge-exchange spectroscopy has become a useful plasma diagnostics tool. To test the methodology, electron-capture reactions from these targets by C6+,N7+, and O8+ are studied at impact energies in the 10-150keV/amu range. State-selective cross sections are contrasted with those predicted by the standard microcanonical formulation of the CTMC method, the CTMC …


Volume 07, Rachel C. Lombardi, Ben Osterhout, Lindsay Graybill, Rebecca E. Dey, Skyler T. Carpenter, Emma Beckett, Jason Ware, Mollie Andrews, James Bates, Landon Cooper, Tiffani Jeffries, Maria Wheaton, Dallas Price, Laura Kahler, Sarah Charlton, Anna Bultrowicz, Emily Spittle, Erin Godwin, Eamon Brokenbrough Apr 2015

Volume 07, Rachel C. Lombardi, Ben Osterhout, Lindsay Graybill, Rebecca E. Dey, Skyler T. Carpenter, Emma Beckett, Jason Ware, Mollie Andrews, James Bates, Landon Cooper, Tiffani Jeffries, Maria Wheaton, Dallas Price, Laura Kahler, Sarah Charlton, Anna Bultrowicz, Emily Spittle, Erin Godwin, Eamon Brokenbrough

Incite: The Journal of Undergraduate Scholarship

Introduction from Interim Dean Dr. Jennifer Apperson

Spatial Analysis of Potential Risk Factors Associated with Addition of Atlantic Coast Pipeline Through Virginia by Rachel C. Lombardi

"Delicate Matters with No Speaking," "Hope and Nothing," "Mono Duality" by Ben Osterhout

"Connect" Graphic Design Senior Project by Lindsay Graybill

Phenolic Acids in Brassicaceae Plants: Ovipositional Stimulants or Deterrents for Cabbage White Butterfly, Pieris Rapae? by Rebecca E. Dey And Skyler T. Carpenter

"Abecedarian Cards" by Emma Beckett, Jason Ware, And Mollie Andrews

Helvetica: A Type Specimen Book by James Bates, Landon Cooper, Tiffani Jeffries, And Maria Wheaton

“Things Left Behind” by Dallas …


Band Gap Engineering Via Doping: A Predictive Approach, Antonis N. Andriotis, Madhu Menon Mar 2015

Band Gap Engineering Via Doping: A Predictive Approach, Antonis N. Andriotis, Madhu Menon

Center for Computational Sciences Faculty Publications

We employ an extension of Harrison's theory at the tight binding level of approximation to develop a predictive approach for band gap engineering involving isovalent doping of wide band gap semiconductors. Our results indicate that reasonably accurate predictions can be achieved at qualitative as well as quantitative levels. The predictive results were checked against ab initio ones obtained at the level of DFT/SGGA + U approximation. The minor disagreements between predicted and ab initio results can be attributed to the electronic processes not incorporated in Harrison's theory. These include processes such as the conduction band anticrossing [Shan et al., …


Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Neon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn Mar 2015

Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Neon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn

Physics Faculty Research & Creative Works

Low-energy (E0 0=65eV) electron-impact single ionization of Ne (2p) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8.5⁰ to 20.0⁰. The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), …


Computational Discovery Of Lanthanide Doped And Co-Doped Y₃Al₅O₁₂ For Optoelectronic Applications, Kamal Kumar Choudhary, Aleksandr V. Chernatynskiy, Kiran Mathew, Eric W. Bucholz, Simon R. Phillpot, Susan Sinnott, Richard G. Hennig Jan 2015

Computational Discovery Of Lanthanide Doped And Co-Doped Y₃Al₅O₁₂ For Optoelectronic Applications, Kamal Kumar Choudhary, Aleksandr V. Chernatynskiy, Kiran Mathew, Eric W. Bucholz, Simon R. Phillpot, Susan Sinnott, Richard G. Hennig

Physics Faculty Research & Creative Works

We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for …


High-Performance Simulations Of Coherent Synchrotron Radiation On Multicore Gpu And Cpu Platforms, B. Terzić, A. Godunov, K. Arumugam, D. Ranjan, M. Zubair Jan 2015

High-Performance Simulations Of Coherent Synchrotron Radiation On Multicore Gpu And Cpu Platforms, B. Terzić, A. Godunov, K. Arumugam, D. Ranjan, M. Zubair

Physics Faculty Publications

Coherent synchrotron radiation (CSR) is an effect of self-interaction of an electron bunch as it traverses a curved path. It can cause a significant emittance degradation and microbunching. We present a new high-performance 2D, particle-in-cell code which uses massively parallel multicore GPU/GPU platforms to alleviate computational bottlenecks. The code formulates the CSR problem from first principles by using the retarded scalar and vector potentials to compute the self-interaction fields. The speedup due to the parallel implementation on GPU/CPU platforms exceeds three orders of magnitude, thereby bringing a previously intractable problem within reach. The accuracy of the code is verified against …


Archive - A Data Management Program, James H. Devilbiss, C. Steven Whisnant, Yasmeen Shorish Jan 2015

Archive - A Data Management Program, James H. Devilbiss, C. Steven Whisnant, Yasmeen Shorish

Department of Physics and Astronomy - Faculty Scholarship

To meet funding agency requirements, a portable data management solution is presented for small research groups. The database created is simple, searchable, robust, and can reside across multiple hard drives. Employing a standard metadata schema for all data, the database ensures a high level of standardization, findability, and organization. The software is written in Perl, runs on UNIX, and presents a web-based user interface. It uses a fast, portable log-in scheme, making it easy to export to other locations. As research continues to move towards more open data sharing and reproducibility, this database solution is agile enough to accommodate external …


Respiratory Particle Deposition Probability Due To Sedimentation With Variable Gravity And Electrostatic Forces, Ioannis Haranas, Ioannis Gkigkitzis, George D. Zouganelis, Maria K. Haranas, Samantha Kirk Jan 2015

Respiratory Particle Deposition Probability Due To Sedimentation With Variable Gravity And Electrostatic Forces, Ioannis Haranas, Ioannis Gkigkitzis, George D. Zouganelis, Maria K. Haranas, Samantha Kirk

Physics and Computer Science Faculty Publications

In this paper, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well for particles with density ρp = 1300 kg/m3, diameters dp = 1, 3, 5 µm and residence times t = 0.0272, 0.2 s respectively. For particles of diameter 1 µm we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the …


Composition-Dependent Structural And Transport Properties Of Amorphous Transparent Conducting Oxides, Rabi Khanal, D. Bruce Buchholz, Robert P. Chang, Julia E. Medvedeva Jan 2015

Composition-Dependent Structural And Transport Properties Of Amorphous Transparent Conducting Oxides, Rabi Khanal, D. Bruce Buchholz, Robert P. Chang, Julia E. Medvedeva

Physics Faculty Research & Creative Works

Structural properties of amorphous In-based oxides, In-X-O with X=Zn, Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In-X-O. At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 …


Electron- And Photon-Impact Ionization Of Furfural, D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, Andrew J. Murray, Don H. Madison, M .J. Brunger Jan 2015

Electron- And Photon-Impact Ionization Of Furfural, D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, Andrew J. Murray, Don H. Madison, M .J. Brunger

Physics Faculty Research & Creative Works

The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a" + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation …