Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Inductive Measurement Of Optically Hyperpolarized Phosphorous Donor Nuclei In An Isotopically Enriched Silicon-28 Crystal, P. Gumann, O. Patange, C. Ramanathan, H. Haas Dec 2014

Inductive Measurement Of Optically Hyperpolarized Phosphorous Donor Nuclei In An Isotopically Enriched Silicon-28 Crystal, P. Gumann, O. Patange, C. Ramanathan, H. Haas

Dartmouth Scholarship

We experimentally demonstrate the first inductive readout of optically hyperpolarized phosphorus-31 donor nuclear spins in an isotopically enriched silicon-28 crystal. The concentration of phosphorus donors in the crystal was 1.5×1015  cm−3, 3 orders of magnitude lower than has previously been detected via direct inductive detection. The signal-to-noise ratio measured in a single free induction decay from a 1  cm3 sample (≈1015 spins) was 113. By transferring the sample to an X-band ESR spectrometer, we were able to obtain a lower bound for the nuclear spin polarization at 1.7 K of ∼64%. The 31P-T2 measured with a Hahn echo sequence was …


Iterative Solutions To The Steady-State Density Matrix For Optomechanical Systems, P. D. Nation, J. R. Johansson, M. P. Blencowe, A. J. Rimberg Nov 2014

Iterative Solutions To The Steady-State Density Matrix For Optomechanical Systems, P. D. Nation, J. R. Johansson, M. P. Blencowe, A. J. Rimberg

Dartmouth Scholarship

We present a sparse matrix permutation from graph theory that gives stable incomplete Lower- Upper (LU) preconditioners necessary for iterative solutions to the steady state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse, and is the only method found to be stable at large …


Information-Entropic Measure Of Energy-Degenerate Kinks In Two-Field Models, R.A.C. Correa, A. De Souza Dutra, M. Gleiser Oct 2014

Information-Entropic Measure Of Energy-Degenerate Kinks In Two-Field Models, R.A.C. Correa, A. De Souza Dutra, M. Gleiser

Dartmouth Scholarship

We investigate the existence and properties of kink-like solitons in a class of models with two interacting scalar fields. In particular, we focus on models that display both double and single-kink solutions, treatable analytically using the Bogomol'nyi–Prasad–Sommerfield bound (BPS). Such models are of interest in applications that include Skyrmions and various superstring-motivated theories. Exploring a region of parameter space where the energy for very different spatially-bound configurations is degenerate, we show that a newly-proposed momentum–space entropic measure called Configurational Entropy (CE) can distinguish between such energy-degenerate spatial profiles. This information-theoretic measure of spatial complexity provides a complementary perspective to situations …


General Transfer-Function Approach To Noise Filtering In Open-Loop Quantum Control, Gerardo A. Paz-Silva, Lorenza Viola Aug 2014

General Transfer-Function Approach To Noise Filtering In Open-Loop Quantum Control, Gerardo A. Paz-Silva, Lorenza Viola

Dartmouth Scholarship

We present a general transfer-function approach to noise filtering in open-loop Hamiltonian engineering protocols for open quantum systems. We show how to identify a computationally tractable set of fundamental filter functions, out of which arbitrary transfer filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental filter-functions set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. We prove that the resulting notion of filtering order reveals conceptually distinct, albeit complementary, …


Robustness Of Composite Pulses To Time-Dependent Control Noise, Chingiz Kabytayev, Todd J. Green, Kaveh Khodjasteh, Michael J. Biercuk, Lorenza Viola, Kenneth R. Brown Jul 2014

Robustness Of Composite Pulses To Time-Dependent Control Noise, Chingiz Kabytayev, Todd J. Green, Kaveh Khodjasteh, Michael J. Biercuk, Lorenza Viola, Kenneth R. Brown

Dartmouth Scholarship

We study the performance of composite pulses in the presence of time-varying control noise on a single qubit. These protocols, originally devised only to correct for static, systematic errors, are shown to be robust to time-dependent non-Markovian noise in the control field up to frequencies as high as ∼10% of the Rabi frequency. Our study combines a generalized filter-function approach with asymptotic dc-limit calculations to give a simple analytic framework for error analysis applied to a number of composite-pulse sequences relevant to nuclear magnetic resonance as well as quantum information experiments. Results include examination of recently introduced concatenated composite pulses …


Fundamental Bounds In Measurements For Estimating Quantum States, Hyang-Tag Lim, Young-Sik Ra, Kang-Hee Hong, Seung-Woo Lee, Yoon-Ho Kim Jul 2014

Fundamental Bounds In Measurements For Estimating Quantum States, Hyang-Tag Lim, Young-Sik Ra, Kang-Hee Hong, Seung-Woo Lee, Yoon-Ho Kim

Dartmouth Scholarship

Quantum measurement unavoidably disturbs the state of a quantum system if any information about the system is extracted. Recently, the concept of reversing quantum measurement has been introduced and has attracted much attention. Numerous efforts have thus been devoted to understanding the fundamental relation of the amount of information obtained by measurement to either state disturbance or reversibility. Here, we experimentally prove the trade-off relations in quantum measurement with respect to both state disturbance and reversibility. By demonstrating the quantitative bound of the trade-off relations, we realize an optimal measurement for estimating quantum systems with minimum disturbance and maximum reversibility. …


Signatures Of The Valley Kondo Effect In Si/Sige Quantum Dots, Mingyun Yuan, R. Joynt, Zhen Yang, Chunyang Tang, D. E. Savage, M. G. Lagally, M. A. Eriksson, A. J. Rimberg Jul 2014

Signatures Of The Valley Kondo Effect In Si/Sige Quantum Dots, Mingyun Yuan, R. Joynt, Zhen Yang, Chunyang Tang, D. E. Savage, M. G. Lagally, M. A. Eriksson, A. J. Rimberg

Dartmouth Scholarship

We report measurements consistent with the valley Kondo effect in Si/SiGe quantum dots, evidenced by peaks in the conductance versus source-drain voltage that show strong temperature dependence. The Kondo peaks show unusual behavior in a magnetic field that we interpret as arising from the valley degree of freedom. The interplay of valley and Zeeman splittings is suggested by the presence of side peaks, revealing a zero-field valley splitting between 0.28 to 0.34 meV. A zero-bias conductance peak for nonzero magnetic field, a phenomenon consistent with valley nonconservation in tunneling, is observed in two samples.


Quantum Resources For Purification And Cooling: Fundamental Limits And Opportunities, Francesco Ticozzi, Lorenza Viola Jun 2014

Quantum Resources For Purification And Cooling: Fundamental Limits And Opportunities, Francesco Ticozzi, Lorenza Viola

Dartmouth Scholarship

Preparing a quantum system in a pure state is ultimately limited by the nature of the system's evolution in the presence of its environment and by the initial state of the environment itself. We show that, when the system and environment are initially uncorrelated and arbitrary joint unitary dynamics is allowed, the system may be purified up to a certain (possibly arbitrarily small) threshold if and only if its environment, either natural or engineered, contains a “virtual subsystem” which has the same dimension and is in a state with the desired purity. Beside providing a unified understanding of quantum purification …


A Cavity-Cooper Pair Transistor Scheme For Investigating Quantum Optomechanics In The Ultra-Strong Coupling Regime, A. J. Rimberg, M. P. Blencowe, A. D. Armour, P. D. Nation May 2014

A Cavity-Cooper Pair Transistor Scheme For Investigating Quantum Optomechanics In The Ultra-Strong Coupling Regime, A. J. Rimberg, M. P. Blencowe, A. D. Armour, P. D. Nation

Dartmouth Scholarship

We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a …


Exact And Approximate Solutions For The Quantum Minimum-Kullback-Entropy Estimation Problem, Carlo Sparaciari, Stefano Olivares, Francesco Ticozzi, Matteo G. A. Paris Apr 2014

Exact And Approximate Solutions For The Quantum Minimum-Kullback-Entropy Estimation Problem, Carlo Sparaciari, Stefano Olivares, Francesco Ticozzi, Matteo G. A. Paris

Dartmouth Scholarship

The minimum-Kullback-entropy principle (mKE) is a useful tool to estimate quantum states and operations from incomplete data and prior information. In general, the solution of an mKE problem is analytically challenging and an approximate solution has been proposed and employed in different contexts. Recently, the form and a way to compute the exact solution for finite dimensional systems has been found, and a question naturally arises on whether the approximate solution could be an effective substitute for the exact solution, and in which regimes this substitution can be performed. Here, we provide a systematic comparison between the exact and the …


Majorana Flat Bands In S -Wave Gapless Topological Superconductors, Shusa Deng, Gerardo Ortiz, Amrit Poudel, Lorenza Viola Apr 2014

Majorana Flat Bands In S -Wave Gapless Topological Superconductors, Shusa Deng, Gerardo Ortiz, Amrit Poudel, Lorenza Viola

Dartmouth Scholarship

We demonstrate how the nontrivial interplay between spin-orbit coupling and nodeless s-wave superconductivity can drive a fully gapped two-band topological insulator into a time-reversal invariant gapless topological superconductor supporting symmetry-protected Majorana flat bands. We characterize topological phase diagrams by a Z2×Z2 partial Berry-phase invariant, and show that, despite the trivial crystal geometry, no unique bulk-boundary correspondence exists. We trace this behavior to the anisotropic quasiparticle bulk gap closing, linear vs quadratic, and argue that this provides a unifying principle for gapless topological superconductivity. Experimental implications for tunneling conductance measurements are addressed, relevant for lead chalcogenide materials.


Hamiltonian Quantum Simulation With Bounded-Strength Controls, Adam D. Bookatz, Pawel Wocjan, Lorenza Viola Apr 2014

Hamiltonian Quantum Simulation With Bounded-Strength Controls, Adam D. Bookatz, Pawel Wocjan, Lorenza Viola

Dartmouth Scholarship

We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an 'Eulerian decoupling cycle,' that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We …


Gravitational Origin Of The Weak Interaction's Chirality, Stephon Alexander, Antonino Marcianò, Lee Smolin Mar 2014

Gravitational Origin Of The Weak Interaction's Chirality, Stephon Alexander, Antonino Marcianò, Lee Smolin

Dartmouth Scholarship

We present a new unification of the electro-weak and gravitational interactions based on the joining the weak SU(2) gauge fields with the left handed part of the space- time connection, into a single gauge field valued in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of the space-time connection, which explains the chirality of the weak interaction. This is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time connection is enough to code the dynamics of the gravitational degrees of freedom. This unification …