Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physics

A Comprehensive Rocket And Radar Study Of Midlatitude Spread F, G.D. Earle, P. Bhanja, P.A. Roddy, C.M. Swenson, Aroh Barjatya, Et Al. Dec 2010

A Comprehensive Rocket And Radar Study Of Midlatitude Spread F, G.D. Earle, P. Bhanja, P.A. Roddy, C.M. Swenson, Aroh Barjatya, Et Al.

Publications

An instrumented sounding rocket launched from Wallops Island Virginia has flown through a midlatitude spread F (MSF) event in conjunction with simultaneous ionosonde, HF radar, and 244 MHz scintillation observations from the ground. The in situ measurements include the electric field, horizontal neutral wind, and plasma density within the spread F region. The ground‐based HF radar measurements of wave signatures in the bottomside F region ledge reveal the presence of waves propagating to the north and northwest prior to and during the spreading event. The periods of these bottomside waves range from 16 to 60 min, and they are shown …


Development Of Acrylamide Based Photopolymer For Full Colour Display Holography, Chakrapani Meka Nov 2010

Development Of Acrylamide Based Photopolymer For Full Colour Display Holography, Chakrapani Meka

Doctoral

Holography is a firmly established discipline that can be used as a tool for scientific and engineering studies and as a display medium as well. Until now both silver halide photographic emulsions (SHPE) and dichromated gelatine (DCG) have been the most common materials used for high efficiency full colour reflection hologram recording. However, these materials require wet chemical processing for developing the holograms which is laborious and costly from the point of view of commercial applications. Self-developing photopolymers such as acrylamide based photopolymer (ABP) which do not require development are the ideal choice for real-time recording and reconstruction of holograms. …


Pulsed Laser Deposition Of Graphite Counter Electrodes For Dye-Sensitized Solar Cells, Krishna P. Acharya, Himal Khatri, Sylvain Marsillac, Bruno Ullrich, Pavel Anzenbacher, Mikhail Zamkov Nov 2010

Pulsed Laser Deposition Of Graphite Counter Electrodes For Dye-Sensitized Solar Cells, Krishna P. Acharya, Himal Khatri, Sylvain Marsillac, Bruno Ullrich, Pavel Anzenbacher, Mikhail Zamkov

Electrical & Computer Engineering Faculty Publications

We report on pulsed laser deposition of graphite onto flexible plastic and conductive glass substrates for use as a counter electrode in dye-sensitized solar cells. The efficiency of as-prepared graphite electrodes was tested using CdS-sensitized solar cell architecture resulting in external quantum efficiency comparable to that of conventional platinum counter electrodes. This work highlights the possibility of using pulsed laser deposited graphite as a low-cost alternative to platinum, which could be fabricated both on flexible and rigid substrates.


Doping Dependence Of Electronic And Mechanical Properties Of Gase1−XTeX And Ga1−XInXSe From First Principles, Zs. Rak, S. D. Mahanti, K. C. Mandal, N. C. Fernelius Oct 2010

Doping Dependence Of Electronic And Mechanical Properties Of Gase1−XTeX And Ga1−XInXSe From First Principles, Zs. Rak, S. D. Mahanti, K. C. Mandal, N. C. Fernelius

Faculty Publications

No abstract provided.


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Theoretical Proposal For A Biosensing Approach Based On A Linear Array Of Immobilized Gold Nanoparticles, S.M.H. Rafsanjani, T. Cheng, S. Mittler, Chitra Rangan Jan 2010

Theoretical Proposal For A Biosensing Approach Based On A Linear Array Of Immobilized Gold Nanoparticles, S.M.H. Rafsanjani, T. Cheng, S. Mittler, Chitra Rangan

Physics Publications

We propose a sensing mechanism for detection of analytes that can specifically recognized. The sensor is based on closely-spaced chains of functionalized gold nanoparticles (NPs) immobilized on a waveguide surface, with the signal detected by evanescent waveguide absorption spectroscopy. The localized surface plasmon spectrum of a linear array of closely-spaced, hemispherical gold NPs is calculated using the discrete dipole approximation. The plasmon band is found to broaden to a nanowirelike spectrum when a dielectric coating is put on the particles, and the light polarization is along the NP chain. The origin of this broadening is shown to be the polarization-dependent …


Unusual Resistance Hysteresis In N-Layer Graphene Field Effect Transistors Fabricated On Ferroelectric Pb(Zr0.2ti0.8)O3, X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, J. Zhu Jan 2010

Unusual Resistance Hysteresis In N-Layer Graphene Field Effect Transistors Fabricated On Ferroelectric Pb(Zr0.2ti0.8)O3, X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, J. Zhu

Xia Hong Publications

We have fabricated n-layer graphene field effect transistors on epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) thin films. At low gate voltages, PZT behaves as a high-k dielectric with k up to 100. An unusual resistance hysteresis occurs in gate sweeps at high voltages, with its direction opposite to that expected from the polarization switching of PZT. The relaxation of the metastable state is thermally activated, with an activation barrier of 50–110 meV and a time constant of 6 h at 300 K. We attribute its origin to the slow dissociation/recombination dynamics of water molecules adsorbed at …


Deposition Of High-Quality Hfo2 On Graphene And The Effect Of Remote Oxide Phonon Scattering, K. Zou, X. Hong, D. Keefer, J. Zhu Jan 2010

Deposition Of High-Quality Hfo2 On Graphene And The Effect Of Remote Oxide Phonon Scattering, K. Zou, X. Hong, D. Keefer, J. Zhu

Xia Hong Publications

We demonstrate atomic layer deposition of high-quality dielectric HfO2 films on graphene and determine the magnitude of remote oxide surface phonon scattering in dual-oxide structures. The carrier mobility in these HfO2-covered graphene samples reaches 20 000 cm2/Vs at low temperature. Distinct contributions to the resistivity from surface optical phonons in the SiO2 substrate and the HfO2 overlayer are isolated. At 300 K, surface phonon modes of the HfO2 film centered at 54 meV limit the mobility to approximately 20 000 cm2/Vs.


Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner Jan 2010

Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner

Xiaoshan Xu Papers

Reflection and transmission as a function of temperature (5–300 K) have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2OSeO3 utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc~60 K). Assignments to strong far-infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature.


Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn Jan 2010

Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn

Nebraska Center for Materials and Nanoscience: Faculty Publications

Neutrons scattered or reflected from a diffraction grating are subject to a periodic potential analogous to the potential experienced by electrons within a crystal. Hence, the wavefunction of the neutrons can be expanded in terms of Bloch waves and a dynamical theory can be applied to interpret the scattering phenomenon. In this paper, a dynamical theory is used to calculate the results of neutron spin-echo resolved grazing-incidence scattering (SERGIS) from a silicon diffraction grating with a rectangular profile. The calculations are compared with SERGIS measurements made on the same grating at two neutron sources: a pulsed source and a continuous …


Comment On "Superfluid Turbulence From Quantum Kelvin Wave To Classical Kolmogorov Cascades", Jeffrey Yepez, George Vahala, Linda L. Vahala, Min Soe Jan 2010

Comment On "Superfluid Turbulence From Quantum Kelvin Wave To Classical Kolmogorov Cascades", Jeffrey Yepez, George Vahala, Linda L. Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Finite Element Analysis Of Ring-Shaped Emission Profile In Plasma Bullet, Yukinori Sakiyama, David B. Graves, Julien Jarrige, Mounir Laroussi Jan 2010

Finite Element Analysis Of Ring-Shaped Emission Profile In Plasma Bullet, Yukinori Sakiyama, David B. Graves, Julien Jarrige, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Using a one-way coupled model of neutral gas flow and plasma dynamics we report a mechanism to explain the ring-shaped emission pattern that has been observed experimentally in plasma bullets at atmospheric pressure. We solve a fluid model with the local field approximation in one-dimensional cylindrical coordinates, corresponding to a cross-section of a plasma bullet. Pulselike uniform electric field is assumed to be applied perpendicular to the simulation domain. Time and spatially resolved spectroscopic measurements support the simulation results.


Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt Jan 2010

Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt

Xiaoshan Xu Papers

We investigated the infrared response of LuFe2O4 through the series of charge, magnetic, and structural transitions. All vibrational modes couple strongly to the charge order, whereas the LuO zone-folding modes are also sensitive to magnetic order and structural distortion. The dramatic splitting of the LuO2 layer mode is attributed to charge-rich/poor proximity effects and its temperature dependence reveals the antipolar nature of the W layer pattern.


Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt Jan 2010

Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ~0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.


Design Sensitivities Of The Superconducting Parallel-Bar Cavity, Subashini U. De Silva, Jean Delayen Jan 2010

Design Sensitivities Of The Superconducting Parallel-Bar Cavity, Subashini U. De Silva, Jean Delayen

Physics Faculty Publications

The superconducting parallel-bar cavity has properties that makes it attractive as a deflecting or crabbing rf structure. For example it is under consideration as an rf separator for the Jefferson Lab 12 GeV upgrade and as a crabbing structure for a possible LHC luminosity upgrade. In order to maintain the purity of the deflecting mode and avoid mixing with the near accelerating mode caused by geometrical imperfection, a minimum frequency separation is needed which depends on the expected deviations from perfect symmetry. We have done an extensive analysis of the impact of several geometrical imperfections on the properties of the …


Applications Of Spoke Cavities, Jean R. Delayen Jan 2010

Applications Of Spoke Cavities, Jean R. Delayen

Physics Faculty Publications

The superconducting spoke cavity was introduced in the late 1980s in response to the need for superconducting structures in the mid-velocity range. Since then it has found application in many projects. Prototypes have been developed for a wide range of beam velocities. The characteristics and features of the spoke cavity are reviewed and some of their applications are presented.


Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt Jan 2010

Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1−xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.


Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom Jan 2010

Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom

Xiaoshan Xu Papers

We have developed the means to grow BiMnO3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with w rocking curve full width at half maximum values as narrow as 11 arc sec (0.003°). Optical absorption measurements reveal that BiMnO3 has a direct band gap of 1.1±0.1 …


Far-Field Optical Nanoscopy Based On Continuous Wave Laser Stimulated Emission Depletion, C. Kuang, Wei Zhao, Guiren Wang Jan 2010

Far-Field Optical Nanoscopy Based On Continuous Wave Laser Stimulated Emission Depletion, C. Kuang, Wei Zhao, Guiren Wang

Faculty Publications

Stimulated emission depletion (STED) microscopy is one of the breakthrough technologies that belong to far-field optical microscopy and can achieve nanoscale spatial resolution. We demonstrate a far-field optical nanoscopy based on continuous wave lasers with different wavelengths, i.e., violet and green lasers for excitation and STED, respectively. Fluorescent dyes Coumarin 102 and Atto 390 are used for validating the depletion efficiency. Fluorescent nanoparticles are selected for characterizing the spatial resolution of the STED system. Linear scanning of the laser beams of the STED system along one line of a microscope slide, which is coated with the nanoparticles, indicates that a …