Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2006

Electron Beams

Articles 1 - 3 of 3

Full-Text Articles in Physics

Differential Electron Emission For Single And Multiple Ionization Of Argon By 500 Ev Positrons, Jared M. Gavin, Robert D. Dubois, O. G. De Lucio Dec 2006

Differential Electron Emission For Single And Multiple Ionization Of Argon By 500 Ev Positrons, Jared M. Gavin, Robert D. Dubois, O. G. De Lucio

Physics Faculty Research & Creative Works

Triply differential electron emission cross sections are measured for single ionization of argon by 500 eV positrons. Data are presented for coincidences between projectiles scattered into angles of 3° and electrons with emission energies less than 10 eV that are observed between 45 and 135° along the beam direction. For interpretation, these are compared to cosine squared representations of the binary and recoil lobes which are convoluted over experimental parameters. Singly differential electron emission data for double and triple ionization by positrons are also presented.


Exploring Relativistic Many-Body Recoil Effects In Highly Charged Ions, R. Soria Orts, Zoltan Harman, Jose R. Crespo Lopez-Urrutia, Anton N. Artemyev, Hjalmar Bruhns, Antonio J. Gonzalez, Ulrich D. Jentschura, Christoph H. Keitel, Alain Lapierre, Vladimir Sergeyevich Mironov, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka Sep 2006

Exploring Relativistic Many-Body Recoil Effects In Highly Charged Ions, R. Soria Orts, Zoltan Harman, Jose R. Crespo Lopez-Urrutia, Anton N. Artemyev, Hjalmar Bruhns, Antonio J. Gonzalez, Ulrich D. Jentschura, Christoph H. Keitel, Alain Lapierre, Vladimir Sergeyevich Mironov, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka

Physics Faculty Research & Creative Works

The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s22s22p 2P1/2-2P3/2 transition in Ar13+ and the 1s22s2p 3P1-3P2 transition …


Benchmarking High-Field Few-Electron Correlation And Qed Contributions In Hg⁷⁵⁺ To Hg⁷⁸⁺ Ions. I. Experiment, Antonio J. Gonzalez, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Alain Lapierre, Vladimir Sergeyevich Mironov, R. Soria Orts, Hiroyuki Tawara, Michael Trinczek, Joachim Hermann Ullrich, Anton N. Artemyev, Zoltan Harman, Ulrich D. Jentschura, Christoph H. Keitel, James H. Scofield, I. I. Tupitsyn May 2006

Benchmarking High-Field Few-Electron Correlation And Qed Contributions In Hg⁷⁵⁺ To Hg⁷⁸⁺ Ions. I. Experiment, Antonio J. Gonzalez, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Alain Lapierre, Vladimir Sergeyevich Mironov, R. Soria Orts, Hiroyuki Tawara, Michael Trinczek, Joachim Hermann Ullrich, Anton N. Artemyev, Zoltan Harman, Ulrich D. Jentschura, Christoph H. Keitel, James H. Scofield, I. I. Tupitsyn

Physics Faculty Research & Creative Works

The photorecombination of highly charged few-electron mercury ions Hg75+ to Hg78+ has been explored with the Heidelberg electron beam ion trap. By monitoring the emitted x rays (65-76 keV) and scanning the electron beam energy (45-54 keV) over the KLL dielectronic recombination (DR) region, the energies of state-selected DR resonances were determined to within ±4 eV (relative) and ±14 eV (absolute). At this level of experimental accuracy, it becomes possible to make a detailed comparison to various theoretical approaches and methods, all of which include quantum electrodynamic (QED) effects and finite nuclear size contributions (for a 1s electron, …