Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2004

Nuclear Engineering

Institution
Keyword
Publication

Articles 1 - 22 of 22

Full-Text Articles in Physics

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report September-December 2004, Denis Beller Dec 2004

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report September-December 2004, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report September-December 2004, Denis Beller Dec 2004

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report September-December 2004, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments will be conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at UT-Austin and Texas A&M. …


Afci Quarterly Input – Unlv October Through December, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Dec 2004

Afci Quarterly Input – Unlv October Through December, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support. Management and program support highlights are the following: the UNLV TRP hosted the Eighth Annual IAEA Actinide and Fission Product Partitioning & Transmutation Information Exchange Meeting (Nov. 9 – 11). 120 people from 22 countries …


Niel Calculations For High-Energy Heavy Ions, John W. Wilson, I. Jun, M. A. Xapsos, E. A. Burke, F. F. Badavi, L. W. Townsend Dec 2004

Niel Calculations For High-Energy Heavy Ions, John W. Wilson, I. Jun, M. A. Xapsos, E. A. Burke, F. F. Badavi, L. W. Townsend

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

Calculations of NIEL are reported for heavy ions prominent in the space environment for energies ranging from 200 MeV per nucleon to 2 GeV per nucleon.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Oct 2004

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

Second task of the BGU part of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project aims at evaluation of the fertile free fuel matrix composition effect on the fuel reactivity and corresponding reactivity limited burnup. Fertile free fuel with different MgO to ZrO2 ratio in the matrix will require different PuO2 loading in order to assure certain fuel cycle length. This is due to the fact that absorption cross section of Zr is slightly higher than that of Mg, although absorption in both of these elements is small compared to Pu. Therefore, the …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Sep 2004

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

This progress report presents results of analysis performed within the framework of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project managed by University of Nevada at Las Vegas, Harry Reid Center for Environmental Studies.

The BGU working program includes the following four tasks:

1. Benchmark of computational tools

2. Determination of fissile Pu loading

3. Evaluation of burnable poison designs

4. Evaluation of reactivity feedback coefficients

This progress report presents the results of Task 1. The main objective of this task is to confirm the validity of the ELCOS 1 code system for inert matrix …


Afci Quarterly Input – Unlv July Through September, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Sep 2004

Afci Quarterly Input – Unlv July Through September, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report June-August 2004, Denis Beller Aug 2004

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report June-August 2004, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is acceleratordriven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex reactor …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project, Denis Beller Jul 2004

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments will be conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at UT-Austin and Texas A&M. …


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Randy Clarksean, Darrell Pepper Jun 2004

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

After considering the heating mechanisms, casting issues, crucible design and issues related to the mass transport of americium, an ISM system was selected for melting the feedstock and casting fuel pins containing high vapor pressure actinides (americium). The finite element commercial software (FIDAP) was used to simulate the induction melting process and the casting process. Phase change is considered both in the heating and in the solidification process. Various factors and properties are studied, such as boundary conditions and initial conditions, output current, frequency of the current, main dimensions of the system, mold preheating temperature, heat transfer coefficient and mold …


Afci Quarterly Input – Unlv April Through June, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Jun 2004

Afci Quarterly Input – Unlv April Through June, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer May 2004

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer

Fuels Campaign (TRP)

This proposal addresses the subject heading ‘Transmutation Fuel Development’ in the 2004 research topic list of the UNLV Transmutation Research Program (TRP) and DOE Advanced Fuel Cycle Initiative (AFCI). The large-scale deployment of remote fabrication and refabrication processes (with a capacity of approx. 100 metric tons of Minor Actinides (MA) annually) will be required for all transmutation scenarios. The objective of this project is the design, analysis, and evaluation of manufacturing processes for transmuter fuel fabrication. Fabrication processes for different fuel types differ in terms of equipment types, throughput, and cost. The evaluation of the fabrication processes will create a …


Preparation Studies For Secondary Electron Emission Experiments On Superconducting Niobium, Anoop George, Robert A. Schill Jr. Mar 2004

Preparation Studies For Secondary Electron Emission Experiments On Superconducting Niobium, Anoop George, Robert A. Schill Jr.

Transmutation Sciences Materials (TRP)

Accelerator driven transmutation of waste is one complementary approach to deal with spent nuclear fuel as compared to permanent storage. High-energy protons generated by a particle accelerator collide with a heavy metal target producing neutrons. Long-lived radioactive isotopes interacting with the neutrons transmute into shorter-lived isotopes. To generate the high-energy protons efficiently, linear accelerators use multi-cell superconducting radio frequency (RF) cavities made of niobium. Superconducting niobium cavities have several advantages, including small power dissipation. The high electromagnetic fields present in these cavities may result in undesired field emission from surface imperfections with the probability of generating an avalanche of secondary …


Afci Quarterly Input – Unlv January Through March, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Mar 2004

Afci Quarterly Input – Unlv January Through March, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Proposal For No-Cost Extension And Re-Scope For Unlv Trp Project: Neutron Multiplicity Measurements For The Afci Program (Advanced Fuel Cycle Initiative), Denis Beller Feb 2004

Proposal For No-Cost Extension And Re-Scope For Unlv Trp Project: Neutron Multiplicity Measurements For The Afci Program (Advanced Fuel Cycle Initiative), Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator-driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex reactor …


Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth Jan 2004

Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth

Separations Campaign (TRP)

The first step in any transmutation strategy is the separation of radionuclides in used nuclear fuel. The current separation strategy supporting the Advanced Fuel Cycle Initiative (AFCI) program is based on the use of a solvent extraction separation process to separate the actinides, fission products, and uranium from used commercial nuclear fuel, and on the use of pyrochemical separation technologies to process used transmuter fuels. To separate the fission products and transuranic elements from the uranium in used fuel, the national program is developing a new solvent extraction process, the Uranium Extraction Plus, or UREX+, process based on the traditional …


Neutron Multiplicity Measurements Of Target/Blanket Materials, Denis Beller Jan 2004

Neutron Multiplicity Measurements Of Target/Blanket Materials, Denis Beller

Transmutation Sciences Physics (TRP)

To optimize the performance of accelerator-driven transmutation subcritical systems (ADS), engineers will need to design the system to operate with a neutron multiplication factor just below that of a critical, or self-sustaining, system. This design criterion requires particle transport codes that instill the highest level of confidence with minimal uncertainty, because larger uncertainties in the codes require larger safety margins in the design and result in a lower efficiency of the ADS transmuter. For current design efforts in the U.S., a Monte Carlo particle transport code MCNPX is used to model neutron production and transport for spallation neutron systems.

While …


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2004

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources. A successful program in nuclear waste processing that includes transmutation in accelerator-driven systems and fast reactors, would significantly decrease the space requirements for geological repositories.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information …


Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain Jan 2004

Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain

Transmutation Sciences Materials (TRP)

The primary objective of this paper is to evaluate the effect of hydrogen on environment assisted cracking of candidate target materials for transmutation applications. Transmutation refers to transformation of long-lived actinides and fission products from spent nuclear fuels (SNF), and occurs when the nucleus of an atom changes because of natural radioactive decay, nuclear fission, nuclear fusion, neutron capture, or other related processes. Martensitic Alloy EP 823 was selected to be the candidate alloy for this investigation. During the initial phase, the stress corrosion cracking (SCC) behavior of this alloy was evaluated in neutral (pH: 6-7) and acidic (pH: 2-3) …


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Jan 2004

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.


University Of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2003-2004, Anthony Hechanova, Elizabeth Johnson, Gary Cerefice Jan 2004

University Of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2003-2004, Anthony Hechanova, Elizabeth Johnson, Gary Cerefice

Transmutation Research Program Reports (TRP)

It is my pleasure to present the UNLV Transmutation Research Program’s third annual report that highlights the academic year 2003 – 2004. Supporting this document are the many technical reports and scientific papers that have been generated over the past three years.

In the third year of our program, we experienced infrastructure growth despite a decreasing budget. This past year we continued into the final phases of the initial 16 independent student research tasks started in 2001 and 2002, supporting 45 graduate students and 11 undergraduates in 6 academic departments across the UNLV scientific and engineering communities during the academic …


Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis Jan 2004

Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis

Physics Faculty Research & Creative Works

Silica aerogels were patterned with CdS using a photolithographic technique based on local heating with infrared (IR) light. The solvent of silica hydrogels was exchanged with an aqueous solution of the precursors CdNO3 and NH4 OH, all precooled to a temperature of 5°C. Half of the bathing solution was then replaced by a thiourea solution. After thiourea diffused into the hydrogels, the samples were exposed to a focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the spots heated by the IR beam to form CdS nanoparticles. We lithographed features with a diameter of …