Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Determining The Locus For Photocarrier Recombination In Dye-Sensitized Solar Cells, Kai Zhu, Eric A. Schiff, N. G. Park, J. Van De Lagemaat, A. J. Frank Jan 2002

Determining The Locus For Photocarrier Recombination In Dye-Sensitized Solar Cells, Kai Zhu, Eric A. Schiff, N. G. Park, J. Van De Lagemaat, A. J. Frank

Physics - All Scholarship

We present intensity-modulated photocurrent and infrared transmittance measurements on dye-sensitized solar cells based on a mesoporous titania (TiO2) matrix immersed in an iodine-based electrolyte. Under short-circuit conditions, we show that an elementary analysis accurately relates the two measurements. Under open-circuit conditions, infrared transmittance, and photovoltage measurements yield information on the characteristic depth at which electrons recombine with ions (the ‘‘locus of recombination’’). For one particular series of samples recombination occurred near the substrate supporting the titania film, as opposed to homogeneously throughout the film.


Thermionic Emission Model For Interface Effects On The Open-Circuit Voltage Of Amorphous Silicon Based Solar Cells, Eric A. Schiff Jan 2002

Thermionic Emission Model For Interface Effects On The Open-Circuit Voltage Of Amorphous Silicon Based Solar Cells, Eric A. Schiff

Physics - All Scholarship

We present computer modeling for effects of the p/i interface upon the open-circuit voltage VOC in amorphous silicon based pin solar cells. We show that the modeling is consistent with measurements on the intensitydependence for the interface effect, and we present an interpretation for the modeling based on thermionic emission of electrons over the electrostatic barrier at the p/i interface. We present additional modeling of the relation of VOC with the intrinsic layer bandgap EG. The experimental correlation for optimized cells is VOC = (EG/e)-0.79. The correlation is simply explained if VOC in these cells is determined by the intrinsic …


Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett Jan 2002

Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett

Faculty Publications

Defects in the band gap of CuIn1-xGaxSe2 have been characterized using transient photocapacitance spectroscopy. The measured spectra clearly show response from a band of defects centered around 0.8 eV from the valence band edge as well as an exponential distribution of band tail states. Despite Ga contents ranging from Ga/(In+Ga)=0.0 to 0.8, the defect bandwidth and its position relative to the valence band remain constant. This defect band may act as an important recombination center, contributing to the decrease in device efficiency with increasing Ga content.


High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman Jan 2002

High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

A Cu(InAl)Se2solar cell with 16.9% efficiency is demonstrated using a Cu(InAl)Se2thin film deposited by four-source elemental evaporation and a device structure of glass/Mo/Cu(InAl)Se2/CdS/ZnO/indium tin oxide/(Ni/Algrid)/MgF2. A key to high efficiency is improved adhesion between the Cu(InAl)Se2 and the Mo back contact layer, provided by a 5-nm-thick Ga interlayer, which enabled the Cu(InAl)Se2 to be deposited at a 530 °C substrate temperature. Film and device properties are compared to Cu(InGa)Se2 with the same band gap of 1.16 eV. The solar cells have similar behavior, with performance limited by recombination through …