Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2000

Conference Proceedings

Articles 1 - 3 of 3

Full-Text Articles in Physics

Measurements Of Electronic Properties Of Conducting Spacecraft Materials With Application To The Modeling Of Spacecraft Charging, W. Y. Chang, Jr Dennison, Parker Judd Jan 2000

Measurements Of Electronic Properties Of Conducting Spacecraft Materials With Application To The Modeling Of Spacecraft Charging, W. Y. Chang, Jr Dennison, Parker Judd

Conference Proceedings

Many spacecraft system anomalies and component failures are known to result from spacecraft charging which is due to the bombardments of spacecraft by energetic electrons, ions, and photons in natural space surrounding [Hastings and Garrett, 1996; Bedingfield et al., 1996; Leach et al., 1995]. To assist spacecraft designers in accommodating and mitigating the harmful charging effects on spacecraft, NASA has developed an extensive set of engineering tools to predict the extent of charging in various spacecraft environments (for example, NASCAP/LEO, NASCAP/GEO, and POLAR) [Mandell et al., 1993]. However, current NASCAP databases lack electronic properties …


Inception Of Snapover And Gas Induced Glow Discharges, J. T. Galofaro, B V. Vayner, D C. Ferguson, C D. Thomson, Jr Dennison, R E. Davies Jan 2000

Inception Of Snapover And Gas Induced Glow Discharges, J. T. Galofaro, B V. Vayner, D C. Ferguson, C D. Thomson, Jr Dennison, R E. Davies

Conference Proceedings

Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment1–4. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed2,5. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. …


Inception Of Snapover And Gas Induced Glow Discharges, J. T. Galofaro, B V. Vayner, W A. Degroot, D C. Ferguson, C D. Thomson, Jr Dennison, R E. Davies Jan 2000

Inception Of Snapover And Gas Induced Glow Discharges, J. T. Galofaro, B V. Vayner, W A. Degroot, D C. Ferguson, C D. Thomson, Jr Dennison, R E. Davies

Conference Proceedings

Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment1-4. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed2,5. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. …