Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Electrostatic Positioning Of Droplets In Turbulent Flows (Lstm 375/Te/93), Nihad E. Daidzic, Adrian Melling Apr 1993

Electrostatic Positioning Of Droplets In Turbulent Flows (Lstm 375/Te/93), Nihad E. Daidzic, Adrian Melling

Aviation Department Publications

Report LSTM 375/TE/93, Lehrstuhl fuer Stroemungsmechanik Universitaet Erlangen-Nuernberg Cauerstr. 4, 8520 Erlangen Germany.


Hysteresis And Anchoring Energy In Ferroelectric Liquid Crystals, Yuri Panarin Jan 1993

Hysteresis And Anchoring Energy In Ferroelectric Liquid Crystals, Yuri Panarin

Articles

The frequency dispersion of the coercive force of Ferroelectric Liquid Crystals (FLC) cells has been detected and examined in the range of infralow (lower than 0.1 Hz) frequencies. To clarify the low-frequency dispersion, the model has been suggested, based on the arrangement of free charges and well describing the experimental curves. The method for determination of the energy of FLC anchoring at the surface, developed on the basis of the static hysteresis loop, has been proposed. The dependence of bistability and the anchoring energy upon the orientant layer thickness has experimentally been investigated.


Absolute-Convective Instabilities And Their Associated Wave Packets In A Compressible Reacting Mixing Layer, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch Jan 1993

Absolute-Convective Instabilities And Their Associated Wave Packets In A Compressible Reacting Mixing Layer, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch

Mathematics & Statistics Faculty Publications

In this paper the transition from convective to absolute instability in a reacting compressible mixing layer with finite rate chemistry is examined. The reaction is assumed to be one step, irreversible, and of Arrhenius type. It is shown that absolute instability can exist for moderate heat release without backflow. The effects of the temperature ratio, heat release parameter, Zeldovich number, equivalence ratio, direction of propagation of the disturbances, and the Mach number on the transition value of the velocity ratio are given. The present results are compared to those obtained from the flame sheet model for the temperature using the …


Erratum: "Temperature And Suction Effects On The Instability Of An Infinite Swept Attachment Line" [Physics Of Fluids A 4, 2008 (1992)], D. G. Lasseigne, T. L. Jackson, F. Q. Hu Jan 1993

Erratum: "Temperature And Suction Effects On The Instability Of An Infinite Swept Attachment Line" [Physics Of Fluids A 4, 2008 (1992)], D. G. Lasseigne, T. L. Jackson, F. Q. Hu

Mathematics & Statistics Faculty Publications

Erratum to:

Lasseigne, D. G., Jackson, T. L., & Hu, F. Q. (1992). Temperature and suction effects on the instability of an infinite swept attachment line. Physics of Fluids A: Fluid Dynamics, 4(9), 2008-2012. doi:10.1063/1.858370


Induced Mach Wave-Flame Interactions In Laminar Supersonic Fuel Jets, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch Jan 1993

Induced Mach Wave-Flame Interactions In Laminar Supersonic Fuel Jets, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch

Mathematics & Statistics Faculty Publications

A model problem is proposed to investigate the steady response of a reacting, compressible laminar jet to Mach waves generated by wavy walls in a channel of finite width. The model consists of a two-dimensional jet of fuel emerging into a stream of oxidizer which are allowed to mix and react in the presence of the Mach waves. The governing equations are taken to be the steady parabolized Navier-Stokes equations which are solved numerically. The kinetics is assumed to be a one-step, irreversible reaction of the Arrhenius type. Two important questions on the Mach wave-flame interactions are discussed: (i) how …


A Numerical Study Of Wave Propagation In A Confined Mixing Layer By Eigenfunction Expansions, Fang Q. Hu Jan 1993

A Numerical Study Of Wave Propagation In A Confined Mixing Layer By Eigenfunction Expansions, Fang Q. Hu

Mathematics & Statistics Faculty Publications

It is well known that the growth rate of instability waves of a two-dimensional free shear layer is reduced greatly at supersonic convective Mach numbers. In previous works, it has been shown that new wave modes exist when the shear layers are bounded by a channel due to the coupling effect between the acoustic wave modes and the motion of the mixing layer. The present work studies the simultaneous propagation of multiple stability waves using numerical simulation. It is shown here that the coexistence of two wave modes in the flow field can lead to an oscillatory growth of disturbance …