Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physics Faculty Publications and Presentations

Discipline
Institution
Keyword
Publication Year

Articles 31 - 60 of 446

Full-Text Articles in Physics

Zno Nanoparticles Modulate The Ionic Transport And Voltage Regulation Of Lysenin Nanochannels, Sheenah L. Bryant, Josh E. Eixenberger, Steven Rossland, Holly Apsley, Connor Hoffman, Nisha Shrestha, Michael Mchugh, Alex Punnoose, Daniel Fologea Dec 2017

Zno Nanoparticles Modulate The Ionic Transport And Voltage Regulation Of Lysenin Nanochannels, Sheenah L. Bryant, Josh E. Eixenberger, Steven Rossland, Holly Apsley, Connor Hoffman, Nisha Shrestha, Michael Mchugh, Alex Punnoose, Daniel Fologea

Physics Faculty Publications and Presentations

Background: The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate.

Results ...


Entropy Production And Volume Contraction In Thermostated Hamiltonian Dynamics, John D. Ramshaw Nov 2017

Entropy Production And Volume Contraction In Thermostated Hamiltonian Dynamics, John D. Ramshaw

Physics Faculty Publications and Presentations

Patra et al. [Int. J. Bifurcat. Chaos 26, 1650089 (2016)] recently showed that the time-averaged rates of entropy production and phase-space volume contraction are equal for several different molecular dynamics methods used to simulate nonequilibrium steady states in Hamiltonian systems with thermostated temperature gradients. This equality is a plausible statistical analog of the second law of thermodynamics. Here we show that those two rates are identically equal in a wide class of methods in which the thermostat variables z are determined by ordinary differential equations of motion (i.e., methods of the Nosé-Hoover or integral feedback control type). This class ...


Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram Nov 2017

Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram

Physics Faculty Publications and Presentations

When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the timescale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields, and a chemical transport model, we estimated how often mixing times are < 1 h within SOA in the planetary boundary layer (PBL), the region of the atmosphere where SOA concentrations are on average the highest. First, a parameterization for viscosity as a function of temperature and RH was developed for α-pinene SOA using room-temperature and low-temperature viscosity data for α-pinene SOA generated in the laboratory using mass concentrations of ∼ 1000 µg m−3. Based on this parameterization, the mixing times within α-pinene SOA are < 1 h for 98.5 % and 99.9 % of the occurrences in the PBL during January and July, respectively, when concentrations are significant (total organic aerosol concentrations are > 0.5 µg m−3 at the surface). Next, as ...


Ion Transport Across Biological Membranes By Carborane-Capped Gold Nanoparticles, Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara ViñAs, Francesc Teixidor, Jonathan J. Abramson, Mathias Brust Nov 2017

Ion Transport Across Biological Membranes By Carborane-Capped Gold Nanoparticles, Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara ViñAs, Francesc Teixidor, Jonathan J. Abramson, Mathias Brust

Physics Faculty Publications and Presentations

Carborane-capped gold nanoparticles (Au/carborane NPs, 2–3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made ...


Quantum Fidelity Approach To The Ground-State Properties Of The One-Dimensional Axial Next-Nearest-Neighbor Ising Model In A Transverse Field, Oz De Alcantara Bonfim, B. Boechat, J. Florencio Oct 2017

Quantum Fidelity Approach To The Ground-State Properties Of The One-Dimensional Axial Next-Nearest-Neighbor Ising Model In A Transverse Field, Oz De Alcantara Bonfim, B. Boechat, J. Florencio

Physics Faculty Publications and Presentations

In this work we analyze the ground-state properties of the s =1/2 one-dimensional axial next-nearest-neighbor Ising model in a transverse field using the quantum fidelity approach. We numerically determined the fidelity susceptibility as a function of the transverse field Bx and the strength of the next-nearest-neighbor interaction J2, for systems of up to 24 spins. We also examine the ground-state vector with respect to the spatial ordering of the spins. The ground-state phase diagram shows ferromagnetic, floating, and ⟨2,2⟩ phases, and we predict an infinite number of modulated phases in the thermodynamic limit (L→∞). Paramagnetism only ...


Ribonucleoprotein Purification And Characterization Using Rna Mango, Shanker Shyam S. Panchapakesan, Matthew L. Ferguson, Eric J. Hayden, Xin Chen, Aaron A. Hoskins, Peter J. Unrau Oct 2017

Ribonucleoprotein Purification And Characterization Using Rna Mango, Shanker Shyam S. Panchapakesan, Matthew L. Ferguson, Eric J. Hayden, Xin Chen, Aaron A. Hoskins, Peter J. Unrau

Physics Faculty Publications and Presentations

The characterization of RNA–protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand, we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs. Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation ranging from pull-down assays to the isolation of large amounts of biochemically defined ...


An Spm Stage Driven By 3 Stepper Motors, Jianghua Bai, Andres H. La Rosa Sep 2017

An Spm Stage Driven By 3 Stepper Motors, Jianghua Bai, Andres H. La Rosa

Physics Faculty Publications and Presentations

A Scanning Probe Microscope (SPM) stage controlled by 3 stepper motors is designed in this project. The SPM stage controlled by 3 steppers is more versatile than a stage controlled by one motor, but the control of the system is more complicated. In this project, we build the stage actions in an Arduino microcontroller. A finite state machine (FSM) is also built in Arduino to communicate with a PC and an RF controller. A special displaying scheme which has 5 states, is also employed to indicate the operation of the stage. Finally, the SPM stage is fully tested and has ...


Aberration Correction In Photoemission Microscopy And Applications In Photonics And Plasmonics, Rolf Könenkamp Sep 2017

Aberration Correction In Photoemission Microscopy And Applications In Photonics And Plasmonics, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report on the design, assembly, operation and application of an aberration-corrected photoemission electron microscope. The instrument used novel hyperbolic mirror-correctors with two and three electrodes that allowed simultaneous correction of spherical and chromatic aberrations. A spatial resolution of 5.4nm was obtained with this instrument in 2009, and 4.7nm in subsequent years. New imaging methodology was introduced involving interferometric imaging of light diffraction. This methodology was applied in nano-photonics and in the characterization of surface-plasmon polaritons. Photonic crystals and waveguides, optical antennas and new plasmonic devices such as routers, localizers and filters were designed and demonstrated using the ...


Low-Dose And In-Painting Methods For (Near) Atomic Resolution Stem Imaging Of Metal Organic Frameworks (Mofs), B. Layla Mehdi, A. J. Stevens, Peter Moeck, Alice Dohnalkova, A. Vjunov, John L. Fulton, Donald M. Camaioni, Omar K. Farha, Joseph T. Hupp, Bruce C. Gates, Johannes A. Lercher, Nigel D. Browning Aug 2017

Low-Dose And In-Painting Methods For (Near) Atomic Resolution Stem Imaging Of Metal Organic Frameworks (Mofs), B. Layla Mehdi, A. J. Stevens, Peter Moeck, Alice Dohnalkova, A. Vjunov, John L. Fulton, Donald M. Camaioni, Omar K. Farha, Joseph T. Hupp, Bruce C. Gates, Johannes A. Lercher, Nigel D. Browning

Physics Faculty Publications and Presentations

Metal-organic Frameworks (MOFs) are a group of crystalline and highly porous materials consisting of inorganic metal ions/clusters (nodes) that are coordinated by organic linkers. The ability to create a wide range of porous structures, where the pore size can be easily changed in size and shape offers the potential for many applications in gas storage/separation and catalysis. The presence of the organic linkers or “struts” in the sample creates challenges for high resolution microscopy as the sample itself is very sensitive to beam damage. A key challenge for understanding the structures of MOFs and how the applications can ...


Essentials Of Building Virtual Instruments With Labview And Arduino For Lab Automation Applications, Jianghua Bai, Andres H. La Rosa May 2017

Essentials Of Building Virtual Instruments With Labview And Arduino For Lab Automation Applications, Jianghua Bai, Andres H. La Rosa

Physics Faculty Publications and Presentations

Four ways to improve the capabilities of a virtual instrument involving a microcontroller are covered in this paper. They are structural modeling and programming, real-time control, asynchronous communication between the microcontroller and the host PC, and system integration. This paper covers 4 common problems encountered by embedded developers and 5 solutions to the 4 problems. The solutions and examples demonstrated in this article will help readers build robust and reliable virtual instruments for crucial applications.


Estimates For The Number Of Visible Galaxy-Spanning Civilizations And The Cosmological Expansion Of Life, S. Jay Olson Apr 2017

Estimates For The Number Of Visible Galaxy-Spanning Civilizations And The Cosmological Expansion Of Life, S. Jay Olson

Physics Faculty Publications and Presentations

If advanced civilizations appear in the universe with an ability and desire to expand, the entire universe can become saturated with life on a short timescale, even if such expanders appear rarely. Our presence in an apparently untouched Milky Way thus constrains the appearance rate of galaxyspanning Kardashev type III (K3) civilizations, if it is assumed that some fraction of K3 civilizations will continue their expansion at intergalactic distances. We use this constraint to estimate the appearance rate of K3 civilizations for 81 cosmological scenarios by specifying the extent to which humanity is a statistical outlier. We find that in ...


Atomic Layer Growth Of Inse And Sb₂Se₃ Layered Semiconductors And Their Heterostructure, Robert Browning, Neal Kuperman, Bill Moon, Raj Solanki Mar 2017

Atomic Layer Growth Of Inse And Sb₂Se₃ Layered Semiconductors And Their Heterostructure, Robert Browning, Neal Kuperman, Bill Moon, Raj Solanki

Physics Faculty Publications and Presentations

Metal chalcogenides based on the C–M–M–C (C = chalcogen, M = metal) structure possess several attractive properties that can be utilized in both electrical and optical devices. We have shown that specular, large area films of y-InSe and Sb2Se3 can be grown via atomic layer deposition (ALD) at relatively low temperatures. Optical (absorption, Raman), crystalline (X-ray diffraction), and composition (XPS) properties of these films have been measured and compared to those reported for exfoliated films and have been found to be similar. Heterostructures composed of a layer of y-InSe (intrinsically n-type) followed by a layer ...


Electrical Properties Of Covalently Functionalized Graphene, Paul Plachinda, David Evans, Raj Solanki Feb 2017

Electrical Properties Of Covalently Functionalized Graphene, Paul Plachinda, David Evans, Raj Solanki

Physics Faculty Publications and Presentations

We have employed first-principle calculations to study transformation of graphene’s electronic structure under functionalization by covalent bonds with different atomic and molecular groups - epoxies, amines, PFPA. It is shown that this functionalization leads to an opening in the graphene’s band gap on order of tens meV, but also leads to reduction of electrical conductivity. We also discuss the influence of charge exchange between the functionalizing molecule and graphene’s conjugated electrons on electron transport properties.


Controlling The Optical Spin Hall Effect With Light, O. Lafont, S. M. H. Luk, P. Lewandowski, N. H. Kwong, P. T. Leung, E. Galopin, A. Lemaitre, J. Tignon, Stefan Schumacher, Elisabeth Baudin, R. Binder Feb 2017

Controlling The Optical Spin Hall Effect With Light, O. Lafont, S. M. H. Luk, P. Lewandowski, N. H. Kwong, P. T. Leung, E. Galopin, A. Lemaitre, J. Tignon, Stefan Schumacher, Elisabeth Baudin, R. Binder

Physics Faculty Publications and Presentations

The optical spin Hall effect is a transport phenomenon of exciton polaritons in semiconductor microcavities, caused by the polaritonic spin-orbit interaction, which leads to the formation of spin textures. The control of the optical spin Hall effect via light injection in a double microcavity is demonstrated. Angular rotations of the polarization pattern up to 22 degrees are observed and compared to a simple theoretical model. The device geometry is responsible for the existence of two polariton branches which allows a robust independent control of the polariton spin and hence the polarization state of the emitted light field, a solution technologically ...


A New Model Of Roche-Lobe Overflow For Short-Period Gaseous Planets And Binary Stars, Brian Jackson, Phil Arras, Kaloyan Penev, Sarah Peacock, Pablo Marchant Feb 2017

A New Model Of Roche-Lobe Overflow For Short-Period Gaseous Planets And Binary Stars, Brian Jackson, Phil Arras, Kaloyan Penev, Sarah Peacock, Pablo Marchant

Physics Faculty Publications and Presentations

Some close-in gaseous exoplanets are nearly in Roche-lobe contact, and previous studies show tidal decay can drive hot Jupiters into contact during the main sequence of their host stars. Improving upon a previous model, we present a revised model for mass transfer in a semi-detached binary system that incorporates an extended atmosphere around the donor and allows for an arbitrary mass ratio. We apply this new formalism to hypothetical, confirmed, and candidate planetary systems to estimate mass loss rates and compare with models of evaporative mass loss. Overflow may be significant for hot Neptunes out to periods of ∼ 2 days ...


Ultra Short Period Planets In K2 With Companions: A Double Transiting System For Epic 220674823, Brian Jackson Feb 2017

Ultra Short Period Planets In K2 With Companions: A Double Transiting System For Epic 220674823, Brian Jackson

Physics Faculty Publications and Presentations

Two transiting planets have been identified orbiting K2 target EPIC 220674823. One object is an ultra-short-period planet (USP) with a period of just 0.57 days (13.7 hours), while the other has a period of 13.3 days. Both planets are small, with the former having a radius of Rp1 = 1.5 R and the latter Rp2 = 2.5 R. Follow-up observations, including radial velocity (with uncertainties of 110 ms−1) and high-resolution adaptive optics imagery, show no signs of stellar companions. EPIC 220674823 is the 12th confirmed or validated planetary system in which an ultra-short-period ...


General Approach To Quantum Channel Impossibility By Local Operations And Classical Communication, Scott M. Cohen Jan 2017

General Approach To Quantum Channel Impossibility By Local Operations And Classical Communication, Scott M. Cohen

Physics Faculty Publications and Presentations

We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that ...


Review Article: Molecular Beam Epitaxy Of Lattice-Matched Inalas And Ingaas Layers On Inp (111)A, (111)B, And (110), Christopher D. Yerino, Baolai Liang, Diana L. Huffaker, Paul J. Simmonds, Minjoo Larry Lee Jan 2017

Review Article: Molecular Beam Epitaxy Of Lattice-Matched Inalas And Ingaas Layers On Inp (111)A, (111)B, And (110), Christopher D. Yerino, Baolai Liang, Diana L. Huffaker, Paul J. Simmonds, Minjoo Larry Lee

Physics Faculty Publications and Presentations

For more than 50 years, research into III–V compound semiconductors has focused almost exclusively on materials grown on (001)-oriented substrates. In part, this is due to the relative ease with which III–Vs can be grown on (001) surfaces. However, in recent years, a number of key technologies have emerged that could be realized, or vastly improved, by the ability to also grow high-quality III–Vs on (111)- or (110)-oriented substrates These applications include: next-generation field-effect transistors, novel quantum dots, entangled photon emitters, spintronics, topological insulators, and transition metal dichalcogenides. The first purpose of this paper is ...


Quantum Fidelity Approach To The Ground-State Properties Of The One-Dimensional Axial Next-Nearest-Neighbor Ising Model In A Transverse Field, O. F. De Alcantara Bonfim, B. Boechat, J. Florencio Jan 2017

Quantum Fidelity Approach To The Ground-State Properties Of The One-Dimensional Axial Next-Nearest-Neighbor Ising Model In A Transverse Field, O. F. De Alcantara Bonfim, B. Boechat, J. Florencio

Physics Faculty Publications and Presentations

In this work we analyze the ground-state properties of the s = 1/2 one-dimensional axial next-nearest-neighbor Ising model in a transverse field using the quantum fidelity approach. We numerically determined the fidelity susceptibility as a function of the transverse field Bx and the strength of the next-nearest-neighbor interaction J2, for systems of up to 24 spins. We also examine the ground-state vector with respect to the spatial ordering of the spins. The ground-state phase diagram shows ferromagnetic, floating, and (2,2) phases, and we predict an infinite number of modulated phases in the thermodynamic limit (L→∞). Paramagnetism only ...


Tidal Decay And Stable Roche-Lobe Overflow Of Short-Period Gaseous Exoplanets, Brian Jackson, Emily Jensen, Sarah Peacock, Phil Arras, Kaloyan Penev Nov 2016

Tidal Decay And Stable Roche-Lobe Overflow Of Short-Period Gaseous Exoplanets, Brian Jackson, Emily Jensen, Sarah Peacock, Phil Arras, Kaloyan Penev

Physics Faculty Publications and Presentations

Many gaseous exoplanets in short-period orbits are on the verge or are in the process of Roche-lobe overflow (RLO). Moreover, orbital stability analysis shows tides can drive many hot Jupiters to spiral inevitably toward their host stars. Thus, the coupled processes of orbital evolution and RLO likely shape the observed distribution of close-in exoplanets and may even be responsible for producing some of the short-period rocky planets. However, the exact outcome for an overflowing planet depends on its internal response to mass loss, and the accompanying orbital evolution can act to enhance or inhibit RLO. In this study, we apply ...


Dust Devil Populations And Statistics, Ralph D. Lorenz, Brian K. Jackson Nov 2016

Dust Devil Populations And Statistics, Ralph D. Lorenz, Brian K. Jackson

Physics Faculty Publications and Presentations

The highly-skewed diameter and pressure drop distributions of dust devils on Earth and Mars are noted, and challenges of presenting and comparing different types of observations are discussed. The widely- held view that Martian dust devils are larger than Earth's is critically-assessed: the question is confounded somewhat by different observation techniques, but some indication of a ~3x larger population on Mars is determined. The largest and most intense (in a relative pressure sense) devils recorded are on Mars, although the largest reported number density is on Earth. The difficulties of concepts used in the literature of 'average' diameter, pressure ...


Förster Resonance Energy Transfer Between Molecules In The Vicinity Of Graphene- Coated Nanoparticles, Tingting Bian, Railing Chang, Pui T. Leung Oct 2016

Förster Resonance Energy Transfer Between Molecules In The Vicinity Of Graphene- Coated Nanoparticles, Tingting Bian, Railing Chang, Pui T. Leung

Physics Faculty Publications and Presentations

The recent demonstration of the plasmonic enhanced Förster resonance energy transfer (FRET) between two molecules in the vicinity of planar graphene monolayers is further investigated using graphene-coated nanoparticles (GNP). Due to the flexibility of these nanostructures in terms of their geometric (size) and dielectric (e.g. core material) properties, greater tunability of the FRET enhancement can be achieved employing the localized surface plasmons. It is found that while the typical characteristic graphene plasmonic enhancements are manifested from using these GNP’s, even higher enhancements can be possible via doping and manipulating the core materials. In addition, the broadband characteristics is ...


Hitting The Goalpost: Calculating The Fine Line Between Winning And Losing A Penalty Shootout, Ralf Widenhorn Oct 2016

Hitting The Goalpost: Calculating The Fine Line Between Winning And Losing A Penalty Shootout, Ralf Widenhorn

Physics Faculty Publications and Presentations

The Portland Timbers won their first Major League Soccer (MLS) Cup Championship in December 2015. However, if it had not been for a kind double goalpost miss during a penalty shootout a few weeks earlier, the Timbers would never have been in the finals. On Oct. 30th, after what has been called "the greatest penalty kick shootout in MLS history," featuring a combined 22 penalties that included penalties by both goalkeepers, the Timbers won their first-round playoff against Sporting Kansas City. During the thrilling shootout, which can be watched on the MLS website, Sporting had two potentially game-winning penalties miss ...


The Physics Of Juggling A Spinning Ping-Pong Ball., Ralf Widenhorn Oct 2016

The Physics Of Juggling A Spinning Ping-Pong Ball., Ralf Widenhorn

Physics Faculty Publications and Presentations

Juggling a spinning ball with a ping-pong paddle represents a challenge both in terms of hand-eye coordination and physics concepts. Here, we analyze the ping-pong ball’s motion, and explore how the correct paddle angle relates to the ball’s spin and speed, as it moves vertically up and down. For students, this requires engaging with concepts like momentum, angular momentum, free-body diagrams, and friction. The activities described in this article include high-speed video motion tracking of the ping-pong ball and the investigation of the frictional characteristics of the paddle. They can be done in a physics lab or at ...


Identifying The Sources Of Ferromagnetism In Sol-Gel Synthesized Zn1-XCoXO (0 ≤ X ≤ 0.10) Nanoparticles, J. J. Beltrán, C. A. Barrero, A. Punnoose Aug 2016

Identifying The Sources Of Ferromagnetism In Sol-Gel Synthesized Zn1-XCoXO (0 ≤ X ≤ 0.10) Nanoparticles, J. J. Beltrán, C. A. Barrero, A. Punnoose

Physics Faculty Publications and Presentations

We have carefully investigated the structural, optical and electronic properties and related them with the magnetism of sol-gel synthesized Zn1-xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Samples with x ≤ 0.05 were pure and free of spurious phases, whereas ZnCo2O4 was identified as the impurity phase for samples with x ≥ 0.08. Samples with x < 0.05 were found to be true solid solutions with only high spin Co2+ ions into ZnO structure, whereas sample with x = 0.05, exhibited the presence of high spin Co2+ and low spin Co3+. For the impurity-free samples we found that as Co concentration increases, a and c lattice ...


Observation Of The Quantum Paradox Of Separation Of A Single Photon From One Of Its Properties, Maximilian Schlosshauer, James M. Ashby, Peter D. Schwarz Jul 2016

Observation Of The Quantum Paradox Of Separation Of A Single Photon From One Of Its Properties, Maximilian Schlosshauer, James M. Ashby, Peter D. Schwarz

Physics Faculty Publications and Presentations

We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the ...


Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose Jun 2016

Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose

Physics Faculty Publications and Presentations

Magnetism and energetics of intrinsic and extrinsic defects and defect clusters in bulk and surfaces of SnO2 is investigated using first-principles to understand the role of surfaces in inducing magnetism in Zn doped nanoparticles. We find that Sn vacancies induce the largest magnetic moment in bulk and on surfaces. However, they have very large formation energies in bulk as well as on surfaces. Oxygen vacancies on the other hand are much easier to create than VSn, but neutral and VO+2 vacancies do not induce any magnetism in bulk as well as on surfaces. VO+1 ...


Electron Beam Effects In Ge–Se Thin Films And Resistance Change Memory Devices, Kasandra Wolf, Hugh Barnaby, Mahesh S. Ailavajhala, Micahel N. Kozicki, Dmitri A. Tenne, Maria Mitkova Jun 2016

Electron Beam Effects In Ge–Se Thin Films And Resistance Change Memory Devices, Kasandra Wolf, Hugh Barnaby, Mahesh S. Ailavajhala, Micahel N. Kozicki, Dmitri A. Tenne, Maria Mitkova

Physics Faculty Publications and Presentations

Chalcogenide glasses are the advanced materials of choice for the emerging nanoionic memory devices – conductive bridge random access memory (CBRAM). To understand the nature of the effects occurring in these devices under influence of electron-beam radiation, the interaction of blanked chalcogenide films and nanostructured films containing chalcogenide glass and silver (Ag) source are studied. Raman spectroscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction are used for establishing the structural and compositional effects occurring under radiation. They have strong compositional dependence with the stoichiometric compositions being most stable showing less structural changes after radiation. These effects are associated with the availability of ...


Selective-Area Growth Of Heavily N–Doped Gaas Nanostubs On Si(001) By Molecular Beam Epitaxy, Yoon Jung Chang, Paul J. Simmonds, Brett Beekley, Mark S. Goorsky, Jason C.S. Woo Apr 2016

Selective-Area Growth Of Heavily N–Doped Gaas Nanostubs On Si(001) By Molecular Beam Epitaxy, Yoon Jung Chang, Paul J. Simmonds, Brett Beekley, Mark S. Goorsky, Jason C.S. Woo

Physics Faculty Publications and Presentations

Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth(SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growthparameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAsgrowth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of ...


On The Visible Size And Geometry Of Aggressively Expanding Civilizations At Cosmological Distances, S. Jay Olson Apr 2016

On The Visible Size And Geometry Of Aggressively Expanding Civilizations At Cosmological Distances, S. Jay Olson

Physics Faculty Publications and Presentations

If a subset of advanced civilizations in the universe choose to rapidly expand into unoccupied space, these civilizations would have the opportunity to grow to a cosmological scale over the course of billions of years. If such life also makes observable changes to the galaxies they inhabit, then it is possible that vast domains of life-saturated galaxies could be visible from the Earth. Here, we describe the shape and angular size of these domains as viewed from the Earth, and calculate median visible sizes for a variety of scenarios. We also calculate the total fraction of the sky that should ...