Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physics Faculty Publications and Presentations

Crystallography -- Data processing

Articles 1 - 2 of 2

Full-Text Articles in Physics

Crystallography Open Database – An Open-Access Collection Of Crystal Structures, Saulius Grazulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, Armel Le Bail Jan 2009

Crystallography Open Database – An Open-Access Collection Of Crystal Structures, Saulius Grazulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, Armel Le Bail

Physics Faculty Publications and Presentations

The Crystallography Open Database (COD), which is a project that aims to gather all available inorganic, metal–organic and small organic molecule structural data in one database, is described. The database adopts an openaccess model. The COD currently contains 80,000 entries in crystallographic information file format, with nearly full coverage of the International Union of Crystallography publications, and is growing in size and quality.


Image-Based Nanocrystallography With Online Database Support, Peter Moeck, Ján Zahornadsky, Boris Dusek Jan 2006

Image-Based Nanocrystallography With Online Database Support, Peter Moeck, Ján Zahornadsky, Boris Dusek

Physics Faculty Publications and Presentations

The crystallographic phase and morphology of many materials change with the crystal size so that new needs arise to determine the crystallography of nanocrystals. Direct space high-resolution phase-contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) when combined with tools for image-based nanocrystallography in two (2D) and three (3D) dimensions possess the capacity to meet these needs. After a concise discussion of lattice-fringe visibility spheres and maps, this paper discusses lattice-fringe fingerprinting in 2D and tilt protocol applications. On-line database developments at Portland State University (PSU) that support image-based nanocrystallography are also mentioned.