Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physics Faculty Publications and Presentations

Nanoscience and Nanotechnology

Crystals -- Structure

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

3d Printing Of Crystallographic Models And Open Access Databases, Werner Kaminsky, Trevor J. Snyder, Peter Moeck Jan 2014

3d Printing Of Crystallographic Models And Open Access Databases, Werner Kaminsky, Trevor J. Snyder, Peter Moeck

Physics Faculty Publications and Presentations

Provides a brief overview of opportunities for crystallography allowed by the recent developments in 3D printing technology. in combination with open access databases.


Nanometrology Device Standards For Scanning Probe Mmicroscopes And Processes For Their Fabrication And Use, Peter Moeck Jan 2009

Nanometrology Device Standards For Scanning Probe Mmicroscopes And Processes For Their Fabrication And Use, Peter Moeck

Physics Faculty Publications and Presentations

Nanometrology device standards and methods for fabricating and using such devices in conjunction With scanning probe microscopes are described. The fabrication methods comprise: (1) epitaxial growth that produces nanometer sized islands of knoWn morphology, structural, morphological and chemical stability in typical nanometrology environments, and large height-to-width nano-island aspect ratios, and (2) marking suitable crystallographic directions on the device for alignment With a scanning direction.


Image-Based Nanocrystallography With Online Database Support, Peter Moeck, Ján Zahornadsky, Boris Dusek Jan 2006

Image-Based Nanocrystallography With Online Database Support, Peter Moeck, Ján Zahornadsky, Boris Dusek

Physics Faculty Publications and Presentations

The crystallographic phase and morphology of many materials change with the crystal size so that new needs arise to determine the crystallography of nanocrystals. Direct space high-resolution phase-contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) when combined with tools for image-based nanocrystallography in two (2D) and three (3D) dimensions possess the capacity to meet these needs. After a concise discussion of lattice-fringe visibility spheres and maps, this paper discusses lattice-fringe fingerprinting in 2D and tilt protocol applications. On-line database developments at Portland State University (PSU) that support image-based nanocrystallography are also mentioned.