Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Rapid Production And Purification Of Dye-Loaded Liposomes By Electrodialysis-Driven Depletion, Gamid Abatchev, Andrew Bogard, Zoe Hutchinson, Jason Ward, Daniel Fologea Jun 2021

Rapid Production And Purification Of Dye-Loaded Liposomes By Electrodialysis-Driven Depletion, Gamid Abatchev, Andrew Bogard, Zoe Hutchinson, Jason Ward, Daniel Fologea

Physics Faculty Publications and Presentations

Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that …


Cholesterol And Cholesterol Bilayer Domains Inhibit Binding Of Alpha-Crystallin To The Membranes Made Of The Major Phospholipids Of Eye Lens Fiber Cell Plasma Membranes, Raju Timsina, Geraline Trossi-Torres, Matthew O'Dell, Nawal K. Khadka, Laxman Mainali May 2021

Cholesterol And Cholesterol Bilayer Domains Inhibit Binding Of Alpha-Crystallin To The Membranes Made Of The Major Phospholipids Of Eye Lens Fiber Cell Plasma Membranes, Raju Timsina, Geraline Trossi-Torres, Matthew O'Dell, Nawal K. Khadka, Laxman Mainali

Physics Faculty Publications and Presentations

The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens’s fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles …


Liposomes Prevent In Vitro Hemolysis Induced By Streptolysin O And Lysenin, Marcelo Ayllon, Gamid Abatchev, Andrew Bogard, Rosey Whiting, Sarah E. Hobdey, Daniel Fologea May 2021

Liposomes Prevent In Vitro Hemolysis Induced By Streptolysin O And Lysenin, Marcelo Ayllon, Gamid Abatchev, Andrew Bogard, Rosey Whiting, Sarah E. Hobdey, Daniel Fologea

Physics Faculty Publications and Presentations

The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their …


Kinetic Exclusion Assay Of Biomolecules By Aptamer Capture, Mark H. Smith, Daniel Fologea Jun 2020

Kinetic Exclusion Assay Of Biomolecules By Aptamer Capture, Mark H. Smith, Daniel Fologea

Physics Faculty Publications and Presentations

DNA aptamers are short nucleotide oligomers selected to bind a target ligand with affinity and specificity rivaling that of antibodies. These remarkable features recommend aptamers as candidates for analytical and therapeutic applications that traditionally use antibodies as biorecognition elements. Numerous traditional and emerging analytical techniques have been proposed and successfully implemented to utilize aptamers for sensing purposes. In this work, we exploited the analytical capabilities offered by the kinetic exclusion assay technology to measure the affinity of fluorescent aptamers for their thrombin target and quantify the concentration of analyte in solution. Standard binding curves constructed by using equilibrated mixtures of …


Temporary Membrane Permeabilization Via The Pore-Forming Toxin Lysenin, Nisha Shrestha, Christopher A. Thomas, Devon Richtsmeier, Andrew Bogard, Rebecca Hermann, Malyk Walker, Gamid Abatchev, Raquel J. Brown, Daniel Fologea May 2020

Temporary Membrane Permeabilization Via The Pore-Forming Toxin Lysenin, Nisha Shrestha, Christopher A. Thomas, Devon Richtsmeier, Andrew Bogard, Rebecca Hermann, Malyk Walker, Gamid Abatchev, Raquel J. Brown, Daniel Fologea

Physics Faculty Publications and Presentations

Pore-forming toxins are alluring tools for delivering biologically-active, impermeable cargoes to intracellular environments by introducing large conductance pathways into cell membranes. However, the lack of regulation often leads to the dissipation of electrical and chemical gradients, which might significantly affect the viability of cells under scrutiny. To mitigate these problems, we explored the use of lysenin channels to reversibly control the barrier function of natural and artificial lipid membrane systems by controlling the lysenin’s transport properties. We employed artificial membranes and electrophysiology measurements in order to identify the influence of labels and media on the lysenin channel’s conductance. Two cell …


Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel Mar 2016

Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel

Physics Faculty Publications and Presentations

Although the dynamics of methane (CH4) emission from croplands and wetlands have been fairly well investigated, the contribution of trees to global CH4 emission and the mechanisms of tree transport are relatively unknown. CH4 emissions from the common wetland tree species Populus trichocarpa (black cottonwood) native to the Pacific Northwest were measured under hydroponic conditions in order to separate plant transport mechanisms from the influence of soil processes. Roots were exposed to CH4 enriched water and canopy emissions of CH4 were measured. The average flux for 34 trials (at temperatures ranging from 17 to 25 °C) was 2.8 ± 2.2 …