Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 196

Full-Text Articles in Physics

Y2O3 Optical Constants Between 5 Nm And 50 Nm, Joseph B. Muhlestein, Benjamin D. Smith, Margaret Miles, Stephanie M. Thomas, Anthony Willey, David D. Allred, R. Steven Turley Jan 2019

Y2O3 Optical Constants Between 5 Nm And 50 Nm, Joseph B. Muhlestein, Benjamin D. Smith, Margaret Miles, Stephanie M. Thomas, Anthony Willey, David D. Allred, R. Steven Turley

Faculty Publications

We report optical constants of e-beam evaporated yttrium oxide Y2O3 thin films as determined from angle-dependent reflectance measurements at wavelengths from 5 to 50 nm. Samples were measured using synchrotron radiation at the Advanced Light Source. The experimental reflectance data were fit to obtain values for the index of refraction and thin film roughness. We compare our computed constants with those of previous researchers and those computed using the independent atom approximation from the CXRO website. We found that the index of refraction near 36 nm is much lower than previous data from Tomiki as reported by …


Linear Least Squares Curve Fitting, R. Steven Turley Sep 2018

Linear Least Squares Curve Fitting, R. Steven Turley

Faculty Publications

This article is a review of the theory and practice behind linear least squares curve fitting. It outlines how to find the optimal parameters to match experimental data with theory and how to estimate the uncertainty in those parameters. The article demonstrates and validates these calculations in Excel, MATLAB, Mathematica, Python, and Julia.


Cubic Interpolation With Irregularly-Spaced Points In Julia 1.4, R. Steven Turley Aug 2018

Cubic Interpolation With Irregularly-Spaced Points In Julia 1.4, R. Steven Turley

Faculty Publications

This article shows how to interpolate between regularly- or irregularly-spaced points in Julia 1.4. It has derivations of the theory behind cubic splines, and piece-wise cubic hermite polynomial interpolation. The spline interpolants are continuous and have continuous first and second derivatives. The hermite polynomial interpolants are continuous and have continuous first derivatives. Three techniques are implemented to determine the slope at the data points for the interpolation (knots). One uses the average slope of the neighboring segments. Another use the quadratic polynomial passing through the point and its two neighbors. The third, PCHIP, is similar to the first method, but …


Fitting Als Reflectance Data Using Python, R. Steven Turley Apr 2018

Fitting Als Reflectance Data Using Python, R. Steven Turley

Faculty Publications

This article describes how to use the python refl library in https://bitbucket.org/steve_turley/reflectance-fitting to fit thin film reflectance data from the Advanced Light Source (ALS) at Lawrence Berkeley National Labs. It uses data taken for a thin film of aluminum capped by a thin film of aluminum fluoride on a silicon nitride substrate. The single fit in the example shown here shows the importance of taking into account the oxidation of the aluminum layer as part of the fit.


Bare Aluminum Oxidation, R. Steven Turley Nov 2017

Bare Aluminum Oxidation, R. Steven Turley

Faculty Publications

This paper computes the oxidation rate of bare evaporated aluminum thin films under high vacuum conditions and exposed to air.


2d Surface Creation Using Intel Mkl, R. Steven Turley Aug 2017

2d Surface Creation Using Intel Mkl, R. Steven Turley

Faculty Publications

This document illustrates how to use the Intel Math Kernel Library (MKL) to create surfaces with a given cut-off spatial frequency and rms surface height. They closely mimic typical surfaces our group has measured using atomic force microscopy (AFM).


Circular Integration Region, R. Steven Turley Aug 2017

Circular Integration Region, R. Steven Turley

Faculty Publications

This report explains how to transform a singular integration over the an arc of a circle into an integration over a unit square using various coordinate transformations include a Duffy transformation. Fortran code illustrating the algorithms is included along with unit test validations.


Measurement Of The Yb I 1S0-1P1 Transition Frequency At 399 Nm Using An Optical Frequency Comb, Michaela Kleinert, M. E. Gold Dahl, Scott D. Bergeson Jan 2016

Measurement Of The Yb I 1S0-1P1 Transition Frequency At 399 Nm Using An Optical Frequency Comb, Michaela Kleinert, M. E. Gold Dahl, Scott D. Bergeson

Faculty Publications

We determine the frequency of the Yb I 1S0-1P1 transition at 399 nm using an optical frequency comb. Although this transition was measured previously using an optical transfer cavity [D. Das et al., Phys, Rev. A 72, 032506 (2005)], recent work has uncovered significant errors in that method. We compare our result of 751 526 533.49 ± 0.33 MHz for the 174Yb isotope with those from the literature and discuss observed differences. We verify the correctness of our method by measuring the frequencies of well-known transitions in Rb and Cs, and by …


Improving Production Of Carbon Nanotube Composites, Dan Broadbent Aug 2015

Improving Production Of Carbon Nanotube Composites, Dan Broadbent

Faculty Publications

Carbon nanotube (CNT) composites offer great promise for making lighter, thinner and stronger structures. Producing CNT composites, however, can be tricky. The focus of this work is to improve production yields of CNT composites by doing research and development in two areas:

  • Research the relationship between ethylene gas concentrations used during CNT growth and yields of usable composite films produced.
  • Develop furnace for growing larger CNT samples, which will enable larger sizes and quantities of research product.


Instrument For Precision Long-Term Ss-Decay Rate Measurements, M. J. Ware, Scott D. Bergeson, J. E. Ellsworth, M. Groesbeck, J. E. Hansen, D. Pace, J. Peatross Jan 2015

Instrument For Precision Long-Term Ss-Decay Rate Measurements, M. J. Ware, Scott D. Bergeson, J. E. Ellsworth, M. Groesbeck, J. E. Hansen, D. Pace, J. Peatross

Faculty Publications

We describe an experimental setup for making precision measurements of relative ß-decay rates of 22Na, 36Cl, 54Mn, 60Co, 90Sr, 133Ba, 137Cs, 152Eu, and 154Eu. The radioactive samples are mounted in two automated sample changers that sequentially position the samples with high spatial precision in front of sets of detectors. The set of detectors for one sample changer consists of four Geiger-Müller (GM) tubes and the other set of detectors consists of two NaI scintillators. The statistical uncertainty in the count rate is few times 0.01% per day for the GM …


Using Higher Ionization States To Increase Coulomb Coupling In An Ultracold Neutral Plasma, M. Lyon, Scott D. Bergeson, A. Diaw, M. S. Murillo Jan 2015

Using Higher Ionization States To Increase Coulomb Coupling In An Ultracold Neutral Plasma, M. Lyon, Scott D. Bergeson, A. Diaw, M. S. Murillo

Faculty Publications

We report measurements and simulations of the time-evolving rms velocity distribution in an ultracold neutral plasma. A strongly coupled ultracold neutral Ca+ plasma is generated by photoionizing laser-cooled atoms close to threshold. A fraction of these ions is then promoted to the second ionization state to form a mixed Ca+-Ca2+ plasma. By varying the time delay between the first and the second ionization events, a minimum in ion heating is achieved. We show that the Coulomb strong-coupling parameter Γ increases by a factor of 1.4 to a maximum value of 3.6. A pure Ca2+ plasma …


Strongly-Coupled Plasmas Formed From Laser-Heated Solids, M. Lyon, Scott D. Bergeson, G. Hart, M. S. Murillo Jan 2015

Strongly-Coupled Plasmas Formed From Laser-Heated Solids, M. Lyon, Scott D. Bergeson, G. Hart, M. S. Murillo

Faculty Publications

We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred.


Limit Of Strong Ion Coupling Due To Electron Shielding, M. Lyon, Scott D. Bergeson, M. S. Murillo Jan 2013

Limit Of Strong Ion Coupling Due To Electron Shielding, M. Lyon, Scott D. Bergeson, M. S. Murillo

Faculty Publications

We show that strong coupling between ions in an ultracold neutral plasma is limited by electron screening. While electron screening reduces the quasiequilibrium ion temperature, it also reduces the ion-ion electrical potential energy. The net result is that the ratio of nearest-neighbor potential energy to kinetic energy in quasiequilibrium is constant and limited to approximately 1 unless the electrons are heated by some external source. We support these conclusions by reporting measurements of the ion velocity distribution in an ultracold neutral calcium plasma. These results match previously reported simulations of Yukawa systems. Theoretical considerations are used to determine the screened …


Versatile Rb Vapor Cells With Long Lifetimes, John F. Hulbert, Matthieu Giraud-Carrier, Tom Wall, Aaron R. Hawkins, Scott D. Bergeson, Jennifer Black, Holger Schmidt Jan 2013

Versatile Rb Vapor Cells With Long Lifetimes, John F. Hulbert, Matthieu Giraud-Carrier, Tom Wall, Aaron R. Hawkins, Scott D. Bergeson, Jennifer Black, Holger Schmidt

Faculty Publications

The authors report on an approach to the construction of long-lasting rubidium atomic vapor cells. The method uses pinch-off copper cold-welds, low temperature solders, and electroplated copper to create long-lasting hermetic seals between containment chambers of dissimilar geometries and materials. High temperature epoxy, eutectic lead/tin solder, and indium solder were considered as sealing materials. These seals were analyzed using accelerated lifetime testing techniques. Vapor cells with epoxy and bare metal solder seals had a decrease in the rubidium atomic density within days after being heated to elevated temperatures. They also exhibited broadened spectra as a result of rubidium reacting with …


Long-Lived Electron Spins In A Modulation Doped (100) Gaas Quantum Well, John S. Colton, D. Meyer, K Clark, D. Craft, J. Cutler, T. Park, P. White Oct 2012

Long-Lived Electron Spins In A Modulation Doped (100) Gaas Quantum Well, John S. Colton, D. Meyer, K Clark, D. Craft, J. Cutler, T. Park, P. White

Faculty Publications

We have measured T1 spin lifetimes of a 14 nm modulation-doped (100) GaAs quantum well using a time-resolved pump-probe Kerr rotation technique. The quantum well was selected by tuning the wavelength of the probe laser. T1 lifetimes in excess of 1 Us were measured at 1.5 K and 5.5 T, exceeding the typical T2 lifetimes that have been measured in GaAs and II-VI quantum wells by orders of magnitude. We observed effects from nuclear polarization, which were largely removable by simultaneous nuclear magnetic resonance, along with two distinct lifetimes under some conditions that likely result from probing two differently localized …


Ground-State Characterizations Of Systems Predicted To Exhibit L11 Or L13 Crystal Structures, Lance J. Nelson, Gus L. W. Hart, Stefano Curtarolo Feb 2012

Ground-State Characterizations Of Systems Predicted To Exhibit L11 Or L13 Crystal Structures, Lance J. Nelson, Gus L. W. Hart, Stefano Curtarolo

Faculty Publications

Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm …


Stable Ordered Structures Of Binary Technetium Alloys From First Principles, Gus L. W. Hart, Ohad Levy, Junkai Xue, Shidong Wang, Stefano Curtarolo Jan 2012

Stable Ordered Structures Of Binary Technetium Alloys From First Principles, Gus L. W. Hart, Ohad Levy, Junkai Xue, Shidong Wang, Stefano Curtarolo

Faculty Publications

Technetium, element 43, is the only radioactive transition metal. It occurs naturally on earth in only trace amounts. Experimental investigation of its possible compounds is thus inherently difficult and limited. Half of the Tc-transition-metal systems (14 out of 28) are reported to be phase separating or lack experimental data. Using high-throughput first-principles calculations, we present a comprehensive investigation of the binary alloys of technetium with the transition metals. The calculations predict stable, ordered structures in nine of these 14 binary systems. They also predict additional compounds in all nine known compound-forming systems and in two of the five systems reported …


"Ultracold" Neutral Plasmas At Room Temperature, N. Heilmann, J. B. Peatross, Scott D. Bergeson Jan 2012

"Ultracold" Neutral Plasmas At Room Temperature, N. Heilmann, J. B. Peatross, Scott D. Bergeson

Faculty Publications

We report a measurement of the electron temperature in a plasma generated by a high-intensity laser focused into a jet of neon. The 15 eV electron temperature is determined using an analytic solution of the plasma equations assuming local thermodynamic equilibrium, initially developed for ultracold neutral plasmas. We show that this analysis method accurately reproduces more sophisticated plasma simulations in our temperature and density range. While our plasma temperatures are far outside the typical "ultracold" regime, the ion temperature is determined by the plasma density through disorder-induced heating just as in ultracold neutral plasma experiments. Based on our results, we …


Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo Dec 2011

Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo

Faculty Publications

Despite the increasing importance of ruthenium in numerous technological applications, e.g., catalysis and electronic devices, experimental and computational data on its binary alloys are sparse. In particular, data are scant on those binary systems believed to be phase-separating. We performed a comprehensive study of ruthenium binary systems with the 28 transition metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in 7 of the 16 binary systems previously believed to be phase-separating and in two of the three systems reported with only a high-temperature σ phase. They also predict a few unreported compounds in five additional systems and …


Guiding The Experimental Discovery Of Magnesium Alloys, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo Aug 2011

Guiding The Experimental Discovery Of Magnesium Alloys, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo

Faculty Publications

Magnesium alloys are among the lightest structural materials known and are of considerable technological interest. To develop superior magnesium alloys, experimentalists must have a thorough understanding of the concentration-dependent precipitates that form in a given system, and hence, the thermodynamic stability of crystal phases must be determined. This information is often lacking but can be supplied by first-principles methods. Within the high-throughput framework, AFLOW, T = 0 K ground-state predictions are made by scanning a large set of known candidate structures for thermodynamic (formation energy) minima. The following 34 systems are investigated: AlMg, AuMg, CaMg, CdMg, CuMg, FeMg , GeMg, …


Polymer Molded Templates For Nanostructured Amorphous Silicon Photovoltaics, Lei Pei, Amy Balls, Cary Tippets, Jonathan Abbott, Matthew R. Linford, David D. Allred, Richard R. Vanfleet, Robert C. Davis, Jian Hu, Arun Madan Apr 2011

Polymer Molded Templates For Nanostructured Amorphous Silicon Photovoltaics, Lei Pei, Amy Balls, Cary Tippets, Jonathan Abbott, Matthew R. Linford, David D. Allred, Richard R. Vanfleet, Robert C. Davis, Jian Hu, Arun Madan

Faculty Publications

Here, the authors report the fabrication of transparent polymer templates for nanostructured amorphous silicon photovoltaics using low-cost nanoimprint lithography of polydimethylsiloxane. The template contains a square two-dimensional array of high-aspect-ratio nanoholes (300 nm diameter by 1 µm deep holes) on a 500X500 nm^2 pitch. A 100 nm thick layer of a-Si:H was deposited on the template surface resulting in a periodically nanostructured film. The optical characterization of the nanopatterned film showed lower light transmission at 600-850 nm wavelengths and lower light reflection at 400-650 nm wavelengths, resulting in 20% higher optical absorbance at AM 1.5 spectral irradiance versus a nonpatterned …


Density And Temperature Scaling Of Disorder-Induced Heating In Ultracold Plasmas, Scott D. Bergeson, A. Denning, M. Lyon, F. Robicheaux Jan 2011

Density And Temperature Scaling Of Disorder-Induced Heating In Ultracold Plasmas, Scott D. Bergeson, A. Denning, M. Lyon, F. Robicheaux

Faculty Publications

We report measurements and simulations of disorder-induced heating in ultracold neutral plasmas. Fluorescence from plasma ions is excited using a detuned probe laser beam while the plasma relaxes from its initially disordered nonequilibrium state. This method probes the wings of the ion velocity distribution. The simulations yield information on time-evolving plasma parameters that are difficult to measure directly and make it possible to connect the fluorescence signal to the rms velocity distribution. The disorder-induced heating signal can be used to estimate the electron and ion temperatures ~100 ns after the plasma is created. This is particularly interesting for plasmas in …


Stern-Gerlach Dynamics With Quantum Propagators, Bailey C. Hsu, Manuel Berrondo, Jean F. Van Huele Jan 2011

Stern-Gerlach Dynamics With Quantum Propagators, Bailey C. Hsu, Manuel Berrondo, Jean F. Van Huele

Faculty Publications

We study the quantum dynamics of a nonrelativistic neutral particle with spin in inhomogeneous external magnetic fields. We first consider fields with one-dimensional inhomogeneities, both unphysical and physical, and construct the corresponding analytic propagators. We then consider fields with two-dimensional inhomogeneities and develop an appropriate numerical propagation method. We propagate initial states exhibiting different degrees of space localization and various initial spin configurations, including both pure and mixed spin states. We study the evolution of their spin densities and identify characteristic features of spin density dynamics, such as the spatial separation of spin components, and spin localization or accumulation. We …


Diode Properties Of Nanotube Networks, David D. Allred, Bryan Hicks, Stephanie Getty Jun 2010

Diode Properties Of Nanotube Networks, David D. Allred, Bryan Hicks, Stephanie Getty

Faculty Publications

Single-walled carbon nanotubes (SWCNT) were prepared using iron catalysts deposited by indirect evaporation on silicon substrate covered with 500 nm-thick thermal oxide. Diode SWCNT devices have been fabricated using Au and Al, as the asymmetric metal contacts, and a random network of metallic and semiconducting nanotubes as the device channel. No effort was made to align the SWCNTs or to eliminate metallic nanotubes in our devices. Asymmetric voltage-current behavior was seen. Current rectification was observed in the source-drain bias range of -3 V to +3 V. Rectification was somewhat surprising since, although metallic tubes are in the minority (~ 1/3), …


Structure Maps For Hcp Metals From First-Principles Calculations, Gus L. W. Hart, Ohad Levy, Stefano Curtarolo May 2010

Structure Maps For Hcp Metals From First-Principles Calculations, Gus L. W. Hart, Ohad Levy, Stefano Curtarolo

Faculty Publications

The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high-throughput methods opens the possibility to enhance these empirical structure maps by ab initio calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for …


Structure-Property Maps And Optimal Inversion In Configurational Thermodynamics, Gus L. W. Hart, Björn Arnold, Alejandro Díaz Ortiz, Helmut Dosch Mar 2010

Structure-Property Maps And Optimal Inversion In Configurational Thermodynamics, Gus L. W. Hart, Björn Arnold, Alejandro Díaz Ortiz, Helmut Dosch

Faculty Publications

Cluster expansions of first-principles density-functional databases in multicomponent systems are now used as a routine tool for the prediction of zero- and finite-temperature physical properties. The ability of producing large databases of various degrees of accuracy, i.e., high-throughput calculations, makes pertinent the analysis of error propagation during the inversion process. This is a very demanding task as both data and numerical noise have to be treated on equal footing. We have addressed this problem by using an analysis that combines the variational and evolutionary approaches to cluster expansions. Simulated databases were constructed ex professo to sample the configurational space in …


Characterization Of Optical Constants For Uranium From 10 To 47 Nm, Nicole Brimhall, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, Justin Peatross Mar 2010

Characterization Of Optical Constants For Uranium From 10 To 47 Nm, Nicole Brimhall, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, Justin Peatross

Faculty Publications

We use a laser high-harmonics-based extreme-ultraviolet (EUV) polarimeter to determine the optical constants of elemental uranium in the wavelength range from 10 to 47 nm. The constants are extracted from the measure ratio of p-polarized to s-polarized reflectance from a thin uranium film deposited in situ. The film thickness is inferred from a spectroscopic ellipsometry measurement of the sample after complete oxidation in room air. Uranium has been used as a high-reflectance material in the EUV. However, difficulties with oxidation prevented its careful characterization previous to this study. We find that measured optical constants for uranium vary significantly from previous …


Ordered Magnesium-Lithium Alloys: First-Principles Predictions, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo Jan 2010

Ordered Magnesium-Lithium Alloys: First-Principles Predictions, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo

Faculty Publications

Magnesium-lithium (Mg-Li) alloys are among the lightest structural materials. Although considerable work has been done on the Mg-Li system, little is known regarding potential ordered phases. A first and rapid analysis of the system with the high-throughput method reveals an unexpected wealth of potentially stable low-temperature phases. Subsequent cluster expansions constructed for bcc and hcp superstructures extend the analysis and verify our high-throughput results. Of particular interest are those structures with greater than 13 at. % lithium, as they exhibit either partial or complete formation as a cubic structure. Order-disorder transition temperatures are predicted by Monte Carlo simulations to be …


Measured Optical Constants Of Copper From 10 Nm To 35 Nm, David D. Allred, Nicole Brimhall, Nicholas Herrick, Justin Peatross, R. Steven Turley, Michael Ware Dec 2009

Measured Optical Constants Of Copper From 10 Nm To 35 Nm, David D. Allred, Nicole Brimhall, Nicholas Herrick, Justin Peatross, R. Steven Turley, Michael Ware

Faculty Publications

We use laser high-order harmonics and a polarization-ratioreflectance technique to determine the optical constants of copper and oxidized copper in the wavelength range 10-35 nm. This measurement resolves previously conflicting data sets, where disagreement on optical constants of copper in the extreme ultraviolet most likely arises from inadvertent oxidation of samples before measurement.


Generating Derivative Structures From Multilattices: Algorithm And Application To Hcp Alloys, Gus L. W. Hart, Rodney W. Forcade Jul 2009

Generating Derivative Structures From Multilattices: Algorithm And Application To Hcp Alloys, Gus L. W. Hart, Rodney W. Forcade

Faculty Publications

We present an algorithm for generating all derivative superstructures of a nonprimitive parent lattice. The algorithm has immediate application in important materials design problems such as modeling hexagonal-close-packed (hcp) alloys. Extending the work of Hart and Forcade [Phys. Rev. B 77, 224115 (2008)] (which applies only to Bravais lattices), this approach applies to arbitrary multilattices. The algorithm enumerates superlattices and atomic configurations using permutation groups rather than direct geometric comparisons. The key concept is to use the quotient group associated with each superlattice to determine all unique atomic configurations. The algorithm is very efficient; the run time scales linearly with …