Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

All HMC Faculty Publications and Research

Condensed Matter Physics

Gallium arsenides

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Intervalley Scattering In Gaas And Inp Probed By Pulsed Far‐Infrared Transmission Spectroscopy, Peter N. Saeta, John F. Federici, Benjamin I. Greene, Douglas R. Dykaar Mar 1992

Intervalley Scattering In Gaas And Inp Probed By Pulsed Far‐Infrared Transmission Spectroscopy, Peter N. Saeta, John F. Federici, Benjamin I. Greene, Douglas R. Dykaar

All HMC Faculty Publications and Research

The dynamics of photoexcited electrons in GaAs and InP were studied using the transmission of 200‐fs pulses of far‐infrared radiation in the spectral range 15–100 cm−1. Kinetic traces of the infrared transmission as a function of delay between optical excitation and infrared probe show a probe‐limited decrease in transmission followed by a more gradual (0.7–2 ps) drop to a steady value, consistent with the slow return of electrons from high‐mass satellite valleys. Infrared transmission spectra, analyzed in the context of a Drude model, reveal density‐dependent electron mobilities 3–4 times below ...


Γ To X Transport Of Photoexcited Electrons In Type Ii Gaas/Alas Multiple Quantum Well Structures, Peter N. Saeta, John F. Federici, R. J. Fischer, Benjamin I. Greene, L. Pfeiffer, R. C. Spitzer, B. A. Wilson Apr 1989

Γ To X Transport Of Photoexcited Electrons In Type Ii Gaas/Alas Multiple Quantum Well Structures, Peter N. Saeta, John F. Federici, R. J. Fischer, Benjamin I. Greene, L. Pfeiffer, R. C. Spitzer, B. A. Wilson

All HMC Faculty Publications and Research

We report novel femtosecond time‐resolved measurements performed on staggered type II GaAs/AlAs multiple quantum well structures. Photoexcited electrons were determined to transfer from the Γ valley of the GaAs layers to the X valleys of the AlAs in 100 and 400 fs for 8‐ and 11‐monolayer‐thick GaAs samples, respectively.