Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

All HMC Faculty Publications and Research

Condensed Matter Physics

2010

Articles 1 - 2 of 2

Full-Text Articles in Physics

Dislocations And Vacancies In Two-Dimensional Mixed Crystals Of Spheres And Dimers, Sharon J. Gerbode, Desmond C. Ong, Chekesha M. Liddell, Itai Cohen Oct 2010

Dislocations And Vacancies In Two-Dimensional Mixed Crystals Of Spheres And Dimers, Sharon J. Gerbode, Desmond C. Ong, Chekesha M. Liddell, Itai Cohen

All HMC Faculty Publications and Research

In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers ...


Glassy Dislocation Dynamics In 2d Colloidal Dimer Crystals, Sharon J. Gerbode, Ugmang Agarwal, Desmond C. Ong, Chekesha M. Liddell, Fernando Escobedo, Itai Cohen Aug 2010

Glassy Dislocation Dynamics In 2d Colloidal Dimer Crystals, Sharon J. Gerbode, Ugmang Agarwal, Desmond C. Ong, Chekesha M. Liddell, Fernando Escobedo, Itai Cohen

All HMC Faculty Publications and Research

Although glassy relaxation is typically associated with disorder, here we report on a new type of glassy dynamics relating to dislocations within 2D crystals of colloidal dimers. Previous studies have demonstrated that dislocation motion in dimer crystals is restricted by certain particle orientations. Here, we drag an optically trapped particle through such dimer crystals, creating dislocations. We find a two-stage relaxation response where initially dislocations glide until encountering particles that cage their motion. Subsequent relaxation occurs logarithmically slowly through a second process where dislocations hop between caged configurations. Finally, in simulations of sheared dimer crystals, the dislocation mean squared displacement ...