Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

All HMC Faculty Publications and Research

Biochemistry, Biophysics, and Structural Biology

Articles 1 - 2 of 2

Full-Text Articles in Physics

Evolution Of Spur-Length Diversity In Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy, Joshua R. Puzey, Sharon J. Gerbode, Scott A. Hodges, Elena M. Kramer, L. Mahadevan Nov 2011

Evolution Of Spur-Length Diversity In Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy, Joshua R. Puzey, Sharon J. Gerbode, Scott A. Hodges, Elena M. Kramer, L. Mahadevan

All HMC Faculty Publications and Research

The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone ...


Phase Modulation At 125 Khz In A Michelson Interferometer Using An Inexpensive Piezoelectric Stack Driven At Resonance, Barbara M. Hoeling, Andrew D. Fernandez, Richard C. Haskell, Daniel C. Petersen Mar 2001

Phase Modulation At 125 Khz In A Michelson Interferometer Using An Inexpensive Piezoelectric Stack Driven At Resonance, Barbara M. Hoeling, Andrew D. Fernandez, Richard C. Haskell, Daniel C. Petersen

All HMC Faculty Publications and Research

Fast phase modulation has been achieved in a Michelson interferometer by attaching a lightweight reference mirror to a piezoelectric stack and driving the stack at a resonance frequency of about 125 kHz. The electrical behavior of the piezo stack and the mechanical properties of the piezo-mirror arrangement are described. A displacement amplitude at resonance of about 350 nm was achieved using a standard function generator. Phase drift in the interferometer and piezo wobble were readily circumvented. This approach to phase modulation is less expensive by a factor of roughly 50 than one based on an electro-optic effect.