Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Wright State University

Electron traps

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Deep Traps In Algan/Gan Heterostructures Studied By Deep Level Transient Spectroscopy: Effect Of Carbon Concentration In Gan Buffer Layers, Z-Q. Fang, B. Claflin, David C. Look, D. S. Green, R. Vetury Sep 2010

Deep Traps In Algan/Gan Heterostructures Studied By Deep Level Transient Spectroscopy: Effect Of Carbon Concentration In Gan Buffer Layers, Z-Q. Fang, B. Claflin, David C. Look, D. S. Green, R. Vetury

Physics Faculty Publications

Electrical properties, including leakage currents, threshold voltages, and deep traps, of AlGaN/GaN heterostructure wafers with different concentrations of carbon in the GaN buffer layer, have been investigated by temperature dependent current-voltage and capacitance-voltage measurements and deep level transient spectroscopy (DLTS), using Schottky barrier diodes (SBDs). It is found that (i) SBDs fabricated on the wafers with GaN buffer layers containing a low concentration of carbon (low-[C] SBD) or a high concentration of carbon (high-[C] SBD) have similar low leakage currents even at 500 K; and (ii) the low-[C] SBD exhibits a larger (negative) threshold voltage than the high-[C] SBD. Detailed …


Electron And Hole Traps In N-Doped Zno Grown On P-Type Si Substrate By Mocvd, Zhaoqiang Fang, Bruce B. Claflin, David C. Look, Lei L. Kerr, Xiaonan Li Jan 2007

Electron And Hole Traps In N-Doped Zno Grown On P-Type Si Substrate By Mocvd, Zhaoqiang Fang, Bruce B. Claflin, David C. Look, Lei L. Kerr, Xiaonan Li

Physics Faculty Publications

Electron and hole traps in N-doped ZnO were investigated using a structure of n+-ZnO:Al/i-ZnO/ZnO:N grown on a p-Si substrate by metalorganic chemical vapor deposition (for growth of the ZnO:N layer) and sputtering deposition (for growth of the i-ZnO and n+-ZnO:Al layers). Current-voltage and capacitance-voltage characteristics measured at temperatures from 200 to 400 K show that the structure is an abrupt n+p diode with very low leakage currents. By using deep level transient spectroscopy, two hole traps, H3 (0.35 eV) and H4 (0.48 eV), are found in the p-Si …


Electron-Irradiation-Induced Deep Level In N-Type Gan, Z-Q. Fang, Joseph W. Hemsky, David C. Look, M. P. Mack Jan 1998

Electron-Irradiation-Induced Deep Level In N-Type Gan, Z-Q. Fang, Joseph W. Hemsky, David C. Look, M. P. Mack

Physics Faculty Publications

Deep-level transient spectroscopy measurements of n-type GaN epitaxial layers irradiated with 1-MeV electrons reveal an irradiation-induced electron trap at EC−0.18 eV. The production rate is approximately 0.2 cm−1, lower than the rate of 1 cm−1 found for the N vacancy by Hall-effect studies. The defect trap cannot be firmly identified at this time. ©1998 American Institute of Physics.