Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of South Carolina

Internal waves

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Cumulative Reaction Probability In Terms Of Reactant-Product Wave Packet Correlation Functions, Sophya V. Garashchuk, D. J. Tannor Jan 1999

Cumulative Reaction Probability In Terms Of Reactant-Product Wave Packet Correlation Functions, Sophya V. Garashchuk, D. J. Tannor

Faculty Publications

We present new expressions for the cumulative reaction probability (N(E)), cast in terms of time-correlation functions of reactant and product wave packets. The derivation begins with a standard trace expression for the cumulative reaction probability, expressed in terms of the reactive scattering matrix elements in an asymptotic internal basis. By combining the property of invariance of the trace with a wave packet correlation function formulation of reactive scattering, we obtain an expression for N(E) in terms of the correlation matrices of incoming and outgoing wave packets which are arbitrary in the internal coordinates. This formulation, like other recent formulations of …


Correlation Function Formulation For The State Selected Total Reaction Probability, Sophya V. Garashchuk, D. J. Tannor Jan 1998

Correlation Function Formulation For The State Selected Total Reaction Probability, Sophya V. Garashchuk, D. J. Tannor

Faculty Publications

A correlation function formulation for the state-selected total reaction probability, Nα(E), is suggested. A wave packet, correlating with a specific set of internal reactant quantum numbers, α, is propagated forward in time until bifurcation is complete at which time the nonreactive portion of the amplitude is discarded. The autocorrelation function of the remaining amplitude is then computed and Fourier transformed to obtain a reactivity spectrum. Dividing by the corresponding spectrum of the original, unfiltered, wave packet normalizes the reactivity spectrum, yielding the total reaction probability from the internal state, α. The procedure requires negligible storage and just one time-energy Fourier …