Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Topological Magnetoelectric Effect As Probed By Nanoshell Plasmonic Modes, Railing Chang, Huai Yi Xie, Ya-Chih Wang, Hai-Pang Chiang, P.T. Leung Dec 2019

Topological Magnetoelectric Effect As Probed By Nanoshell Plasmonic Modes, Railing Chang, Huai Yi Xie, Ya-Chih Wang, Hai-Pang Chiang, P.T. Leung

Physics Faculty Publications and Presentations

Axion electrodynamics is applied to study the response of a plasmonic nanoshell with a core made of topological insulator (TI) materials. The electric polarizability of such a system is calculated in the long wavelength limit via the introduction of two scalar potentials satisfying the various appropriate boundary conditions. Our focus is on the topological magneto-electric effect (TME) as manifested in the coupled plasmonic resonances of the nanoshell. It is found that for a TI with broken time-reversal symmetry, such TME will lead to observable red-shifts in the coupled plasmonic modes, with more significant manifestation of such shifts for the bonding …


Using A Local Positioning System To Track 2d Motion, Paul R. Destefano, Cora Siebert, Ralf Widenhorn Sep 2019

Using A Local Positioning System To Track 2d Motion, Paul R. Destefano, Cora Siebert, Ralf Widenhorn

Physics Faculty Publications and Presentations

Tracking the motion of an object in 2D as a demonstration in a physics classroom or as a laboratory activity is difficult to accomplish in real time with traditional equipment used by educators. A local positioning system (LPS), like the Pozyx Creator series LPS,1 has a potentially wide range of educational applications for introductory physics courses. In a previous article2 we reported using this product to track one-dimensional motion, pressure, rotation, and magnetic field data, but here we discuss how such systems can provide location information (to within approximately ±10 cm) in one, two, and potentially three dimensions both indoors …


Adapting Realtime Physics For Distance Learning With The Iolab, Erik Bodegom, Erik Jensen, David Sokoloff Sep 2019

Adapting Realtime Physics For Distance Learning With The Iolab, Erik Bodegom, Erik Jensen, David Sokoloff

Physics Faculty Publications and Presentations

The IOLab is a versatile and inexpensive data acquisition device in a cart that can roll on its three wheels. It has numerous sensors for a variety of physical quantities. We adapted RealTime Physics, Module 1: Mechanics active learning labs for use with the IOLab. We tested these labs both on campus and with distance learners at Portland State University and Chemeketa Community College for three years, consistently obtaining significant conceptual learning gains on the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards the labs, the device, and distance learning—as measured by post-course evaluations—were generally very positive.


The Fourier Spectrum Of A Singing Wine Glass, Reuben Leatherman, Justin Charles Dunlap, Ralf Widenhorn Aug 2019

The Fourier Spectrum Of A Singing Wine Glass, Reuben Leatherman, Justin Charles Dunlap, Ralf Widenhorn

Physics Faculty Publications and Presentations

The phenomenon of the singing wineglass is familiar to many. Most people have run a finger along the rim of a wine glass with the right speed and pressure to get it to whistle a tone or perhaps heard a glass harmonica being played. However, have you ever noticed and wondered why the vibrations caused by a finger on a glass produce a pulsating sound, rather than a steady, constant-amplitude vibration? Further exploration reveals that the sound and pulsations of a wine glass vary depending on the way the wine glass is stimulated. In this paper, we investigate and model …


Multiwavelength Digital Holographic Imaging And Phase Unwrapping Of Protozoa Using Custom Fiji Plug-Ins, David Cohoe, Iulia Hanczarek, J. Kent Wallace, Jay Nadeau Jul 2019

Multiwavelength Digital Holographic Imaging And Phase Unwrapping Of Protozoa Using Custom Fiji Plug-Ins, David Cohoe, Iulia Hanczarek, J. Kent Wallace, Jay Nadeau

Physics Faculty Publications and Presentations

Multiwavelength digital holographic microscopy (DHM) has been used to improve phase reconstructions of digital holograms by reducing 2p phase ambiguities. However, most samples used as test images have been solid or adhered to a surface, making it easy to determine focal planes and correct for chromatic aberration. In this study we apply 3-wavelength off-axis DHM to swimming protozoa containing distinct spectral features such as chlorophyll and carotenoids. We reconstruct the holograms into amplitude and phase images using the angular spectrum method. Methods for noise subtraction, chromatic aberration correction, and image registration are presented for both amplitude and phase. Approaches to …


On Classification Approaches For Crystallographic Symmetries Of Noisy 2d Periodic Patterns, Peter Moeck May 2019

On Classification Approaches For Crystallographic Symmetries Of Noisy 2d Periodic Patterns, Peter Moeck

Physics Faculty Publications and Presentations

The existing types of classification approaches for the crystallographic symmetries of patterns that are more or less periodic in two dimensions (2D) are reviewed. Their relative performance is evaluated in a qualitative manner. Pseudo-symmetries of different kinds are discussed as they present severe challenges to most classification approaches when noise levels are moderate to high. The author’s information theory based approaches utilize digital images and geometric Akaike Information Criteria. They perform well in the presence of pseudo-symmetries and turn out to be the only ones that allow for fully objective (completely researcher independent) and generalized noise level dependent classifications of …


Sound Propagation, Reflection, And Its Relevance To Ultrasound Imaging, Thomas Allen, Alex Chally, Bradley Moser, Ralf Widenhorn Mar 2019

Sound Propagation, Reflection, And Its Relevance To Ultrasound Imaging, Thomas Allen, Alex Chally, Bradley Moser, Ralf Widenhorn

Physics Faculty Publications and Presentations

The labs presented here build on a simple speed of sound activity and models medical ultrasound imaging by demonstrating how multiple reflections propagate in a closed system. A short sound pulse is emitted into a pipe that is closed at one end and contains one or more partially reflecting surfaces within the pipe. The variety of reflections and transmissions that occur can be measured with a microphone at the pipe entrance.


Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram Feb 2019

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram

Physics Faculty Publications and Presentations

Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown …


Photoemission Electron Microscopy To Characterize Slow Light In A Photonic Crystal Line Defect, Theodore Stedmark, Rolf Könenkamp Jan 2019

Photoemission Electron Microscopy To Characterize Slow Light In A Photonic Crystal Line Defect, Theodore Stedmark, Rolf Könenkamp

Physics Faculty Publications and Presentations

Using femtosecond nonlinear photoemission electron microscopy (PEEM) we provide a detailed characterization of slow light in a small-size asymmetric photonic crystal structure. We show that PEEM is capable of providing a unique description of the light propagation in such structures by direct imaging of the guided mode. This noninvasive characterization technique allows modal properties such as effective index, phase velocities, and group velocities to be determined. Combining experimental results with finite element method simulation calculations, we study slow light phenomena in a photonic crystal defect mode, and we produce a comprehensive picture of the mechanisms behind it. Our results illustrate …


Imaging Technologies And Strategies For Detection Of Extant Extraterrestrial Microorganisms, Jay Nadeau, Manuel Bedrossian, Chris Lindensmith Jan 2019

Imaging Technologies And Strategies For Detection Of Extant Extraterrestrial Microorganisms, Jay Nadeau, Manuel Bedrossian, Chris Lindensmith

Physics Faculty Publications and Presentations

There is no reductionist definition of life, so the way organisms look, behave, and move is the most definitive way to identify extraterrestrial life. Life elsewhere in the Solar System is likely to be microbial, but no microscope capable of imaging prokaryotic life has ever flown on a lander mission to a habitable planet. Nonetheless, high-resolution microscopes have been developed that are appropriate for planetary exploration. Traditional light microscopy, interferometric microscopy, light-field microscopy, scanning probe microscopy, and electron microscopy are all possible techniques for the detection of extant micro-organisms on Mars and the moons of Jupiter and Saturn. This article …