Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Measures Of Centrality Based On The Spectrum Of The Laplacian, Scott D. Pauls, Daniel Remondini Dec 2012

Measures Of Centrality Based On The Spectrum Of The Laplacian, Scott D. Pauls, Daniel Remondini

Dartmouth Scholarship

We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information.

We explore this centrality in the context of several examples. While for sparse unweighted net- works 1-spectral centrality behaves similarly to other standard centralities, for dense weighted net- works they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) …


Approach To Accurately Measuring The Speed Of Optical Precursors, Chuan-Feng Li, Zong-Quan Zhou, Heejeong Jeong, Guang-Can Guo Oct 2011

Approach To Accurately Measuring The Speed Of Optical Precursors, Chuan-Feng Li, Zong-Quan Zhou, Heejeong Jeong, Guang-Can Guo

Dartmouth Scholarship

Precursors can serve as a bound on the speed of information with dispersive medium. We propose a method to identify the speed of optical wavefronts using polarization-based interference in a solid-state device, which can bound the accuracy of the speed of wavefronts to less than 10−4 with conventional experimental conditions. Our proposal may have important implications for optical communications and fast information processing.


Exact Solutions For Social And Biological Contagion Models On Mixed Directed And Undirected, Degree-Correlated Random Networks, Joshua L. Payne, Kameron Decker Harris, Peter Sheridan Dodds Jun 2011

Exact Solutions For Social And Biological Contagion Models On Mixed Directed And Undirected, Degree-Correlated Random Networks, Joshua L. Payne, Kameron Decker Harris, Peter Sheridan Dodds

Dartmouth Scholarship

We derive analytic expressions for the possibility, probability, and expected size of global spread- ing events starting from a single infected seed for a broad collection of contagion processes acting on random networks with both directed and undirected edges and arbitrary degree-degree correla- tions. Our work extends previous theoretical developments for the undirected case, and we provide numerical support for our findings by investigating an example class of networks for which we are able to obtain closed-form expressions.


Turbulence And Bias-Induced Flows In Simple Magnetized Toroidal Plasmas, B. Li, B. N. Rogers, P. Ricci, K. W. Gentle May 2011

Turbulence And Bias-Induced Flows In Simple Magnetized Toroidal Plasmas, B. Li, B. N. Rogers, P. Ricci, K. W. Gentle

Dartmouth Scholarship

Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three- dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows. These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures, and thereby lower the radial plasma transport on the low field side.


Direct, Physically-Motivated Derivation Of The Contagion Condition For Spreading Processes On Generalized Random Networks, Peter Sheridan Dodds, Kameron Decker Harris, Joshua L. Payne May 2011

Direct, Physically-Motivated Derivation Of The Contagion Condition For Spreading Processes On Generalized Random Networks, Peter Sheridan Dodds, Kameron Decker Harris, Joshua L. Payne

Dartmouth Scholarship

For a broad range of single-seed contagion processes acting on generalized random networks, we derive a unifying analytic expression for the possibility of global spreading events in a straightforward, physically intuitive fashion. Our reasoning lays bare a direct mechanical understanding of an archetypal spreading phenomena that is not evident in circuitous extant mathematical approaches.


Anomalous Nonergodic Scaling In Adiabatic Multicritical Quantum Quenches, Shusa Deng, Gerardo Ortiz, Lorenza Viola Sep 2009

Anomalous Nonergodic Scaling In Adiabatic Multicritical Quantum Quenches, Shusa Deng, Gerardo Ortiz, Lorenza Viola

Dartmouth Scholarship

We investigate non-equilibrium dynamical scaling in adiabatic quench processes across quantum multi critical points. Our analysis shows that the resulting power-law scaling depends sensitively on the control path, and that anomalous critical exponents may emerge depending on the universality class. We argue that the observed anomalous behavior originates in the fact that the dynamical excitation process takes place asymmetrically with respect to the static multicritical point, and that non-critical energy modes may play a dominant role. As a consequence, dynamical scaling requires introducing new non-static exponents.


Displacement Detection With A Vibrating Rf Superconducting Interference Device: Beating The Standard Linear Limit, Eyal Buks, Stav Zaitsev, Eran Segev, Baleegh Abdo, M. P. Blencowe Aug 2007

Displacement Detection With A Vibrating Rf Superconducting Interference Device: Beating The Standard Linear Limit, Eyal Buks, Stav Zaitsev, Eran Segev, Baleegh Abdo, M. P. Blencowe

Dartmouth Scholarship

We study a configuration for displacement detection consisting of a nanomechanical resonator coupled to both a radio frequency superconducting interference device and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homodyne detection is employed for readout. We show that displacement sensitivity of the device in this region may exceed the upper bound imposed upon the …


Orientation Of Optically Trapped Nonspherical Birefringent Particles, Wolfgang Singer, Timo A. Nieminen, Ursula J. Gibson, Norman R. Heckenberg Feb 2006

Orientation Of Optically Trapped Nonspherical Birefringent Particles, Wolfgang Singer, Timo A. Nieminen, Ursula J. Gibson, Norman R. Heckenberg

Dartmouth Scholarship

While the alignment and rotation of microparticles in optical traps have received increased attention recently, one of the earliest examples has been almost totally neglected—the alignment of particles relative to the beam axis, as opposed to about the beam axis. However, since the alignment torques determine how particles align in a trap, they are directly relevant to practical applications. Lysozyme crystals are an ideal model system to study factors determining the orientation of nonspherical birefringent particles in a trap. Both their size and their aspect ratio can be controlled by the growth parameters, and their regular shape makes computational modeling …


Low Magnetic Prandtl Number Dynamos With Helical Forcing, Pablo D. Mininni, David C. Montgomery Nov 2005

Low Magnetic Prandtl Number Dynamos With Helical Forcing, Pablo D. Mininni, David C. Montgomery

Dartmouth Scholarship

We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent flow it is observed to be nearly independent on the magnetic Prandtl number in the range from ∼0.3 to ∼0.1. Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the different regimes found, the configuration of the magnetic and velocity …


Numerical Solutions Of The Three-Dimensional Magnetohydrodynamic Α Model, Pablo D. Mininni, David C. Montgomery, Annick Pouquet Apr 2005

Numerical Solutions Of The Three-Dimensional Magnetohydrodynamic Α Model, Pablo D. Mininni, David C. Montgomery, Annick Pouquet

Dartmouth Scholarship

We present direct numerical simulations and α-model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD α model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the α model correctly reproduce the growth rate of magnetic energy during the kinematic regime, it also captures the nonlinear saturation level and the late generation of a large scale …


High-Latitude Propagation Studies Using A Meridional Chain Of Lf/Mf/Hf Receivers, J Labelle Apr 2004

High-Latitude Propagation Studies Using A Meridional Chain Of Lf/Mf/Hf Receivers, J Labelle

Dartmouth Scholarship

For over a decade, Dartmouth College has oper- ated programmable radio receivers at multiple high-latitude sites covering the frequency range 100–5000 kHz with about a 1-s resolution. Besides detecting radio emissions of auro- ral origin, these receivers record characteristics of the iono- spheric propagation of natural and man-made signals, docu- menting well-known effects, such as the diurnal variation in the propagation characteristics of short and long waves, and also revealing more subtle effects. For example, at auroral zone sites in equinoctial conditions, the amplitudes of dis- tant transmissions on MF/HF frequencies are often enhanced by a few dB just before …


Resonant Emergence Of Global And Local Spatiotemporal Order In A Nonlinear Field Model, Marcelo Gleiser, Rafael C. Howell Dec 2003

Resonant Emergence Of Global And Local Spatiotemporal Order In A Nonlinear Field Model, Marcelo Gleiser, Rafael C. Howell

Dartmouth Scholarship

We investigate the nonequilibrium evolution of a scalar field in (2+1) dimensions. The field is set in a double-well potential in contact (open) or not (closed) with a heat bath. For closed systems, we observe the synchronized emergence of coherent spatiotemporal configurations, identified with oscillons. This initial global ordering degenerates into localized order until all oscillons disappear. We show that the synchronization is driven by resonant parametric oscillations of the field’s zero mode and that local ordering is only possible outside equipartition. None of these orderings occur for open systems.


Adiabatic Invariance With First Integrals Of Motion, Artur D. Adib Oct 2002

Adiabatic Invariance With First Integrals Of Motion, Artur D. Adib

Dartmouth Scholarship

The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can …


Nonequilibrium Precursor Model For The Onset Of Percolation In A Two-Phase System, Marcelo Gleiser, Rafael C. Howell, Rudnei O. Ramos Feb 2002

Nonequilibrium Precursor Model For The Onset Of Percolation In A Two-Phase System, Marcelo Gleiser, Rafael C. Howell, Rudnei O. Ramos

Dartmouth Scholarship

Using a Boltzmann-like equation, we investigate the nonequilibrium dynamics of nonperturbative fluctuations within the context of Ginzburg-Landau models. As an illustration, we examine how a two-phase system initially prepared in a homogeneous, low-temperature phase becomes populated by precursors of the opposite phase as the temperature is increased. We compute the critical value of the order parameter for the onset of percolation, which signals the breakdown of the conventional dilute gas approximation.


Velocity Field Distributions Due To Ideal Line Vortices, Thomas D. Levi, David C. Montgomery Apr 2001

Velocity Field Distributions Due To Ideal Line Vortices, Thomas D. Levi, David C. Montgomery

Dartmouth Scholarship

We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on “nearest-neighbor” contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity “tail” on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the …