Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Ultrafast Electronic Disordering During Femtosecond Laser Melting Of Gaas, Peter N. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, E. Mazur Aug 1991

Ultrafast Electronic Disordering During Femtosecond Laser Melting Of Gaas, Peter N. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, E. Mazur

All HMC Faculty Publications and Research

We have observed an ultrarapid electronic phase transformation to a centrosymmetric electronic state during laser excitation of GaAs with intense femtosecond pulses. Reflection second-harmonic intensity from the upper 90 atomic layers vanishes within 100 fs; reflectivity rises within 0.5 ps to a steady value characteristic of a metallic molten phase, long before phonon emission can heat the lattice to the melting temperature.


Optical Property Measurements In Turbid Media Using Frequency Domain Photon Migration, Bruce J. Tromberg, Lars O. Svaasand, Tsong-Tseh Tsay, Richard C. Haskell, Michael W. Berns Jan 1991

Optical Property Measurements In Turbid Media Using Frequency Domain Photon Migration, Bruce J. Tromberg, Lars O. Svaasand, Tsong-Tseh Tsay, Richard C. Haskell, Michael W. Berns

All HMC Faculty Publications and Research

In frequency domain photon migration (FDPM), amplitude-modulated light is launched into a turbid medium, e.g. tissue, which results in the propagation of density waves of diffuse photons. Variations in the optical properties of the medium perturb the phase velocity and amplitude of the diffusing waves. These parameters can be determined by measuring the phase delay and demodulation amplitude of the waves with respect to the source. More specifically, the damped spherical wave solutions to the homogeneous form of the diffusion equation yield expressions for phase (φ) and demodulation (m) as a function of source distance, modulation frequency, absorption coefficient (β), …


Modulated, Frequency-Locked, And Chaotic Cross-Waves, William B. Underhill, Seth Lichter, Andrew J. Bernoff Jan 1991

Modulated, Frequency-Locked, And Chaotic Cross-Waves, William B. Underhill, Seth Lichter, Andrew J. Bernoff

All HMC Faculty Publications and Research

Measurements were made of the wave height of periodic, quasi-periodic, and chaotic parametrically forced cross-waves in a long rectangular channel. In general, three frequencies (and their harmonics) may be observed: the subharmonic frequency and two slow temporal modulations — a one-mode instability associated with streamwise variation and a sloshing motion associated with spanwise variation. Their interaction, as forcing frequency, f, and forcing amplitude, a, were varied, produced a pattern of Arnold tongues in which two or three frequencies were locked. The overall picture of frequency-locked and -unlocked regions is explained in terms of the Arnold tongues predicted by …