Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Sum Rules And Universality In Electron-Modulated Acoustic Phonon Interaction In A Free-Standing Semiconductor Plate, Shigeyasu Uno, Darryl H. Yong, Nobuya Mori Jun 2009

Sum Rules And Universality In Electron-Modulated Acoustic Phonon Interaction In A Free-Standing Semiconductor Plate, Shigeyasu Uno, Darryl H. Yong, Nobuya Mori

All HMC Faculty Publications and Research

Analysis of acoustic phonons modulated due to the surfaces of a free-standing semiconductor plate and their deformation-potential interaction with electrons are presented. The form factor for electron-modulated acoustic phonon interaction is formulated and analyzed in detail. The form factor at zero in-plane phonon wave vector satisfies sum rules regardless of electron wave function. The form factor is larger than that calculated using bulk phonons, leading to a higher scattering rate and lower electron mobility. When properly normalized, the form factors lie on a universal curve regardless of plate thickness and material.


Stability Of Traveling Waves In Thin Liquid Films Driven By Gravity And Surfactant, Ellen Peterson, Michael Shearer, Thomas P. Witelski, Rachel Levy Jan 2009

Stability Of Traveling Waves In Thin Liquid Films Driven By Gravity And Surfactant, Ellen Peterson, Michael Shearer, Thomas P. Witelski, Rachel Levy

All HMC Faculty Publications and Research

A thin layer of fluid flowing down a solid planar surface has a free surface height described by a nonlinear PDE derived via the lubrication approximation from the Navier Stokes equations. For thin films, surface tension plays an important role both in providing a significant driving force and in smoothing the free surface. Surfactant molecules on the free surface tend to reduce surface tension, setting up gradients that modify the shape of the free surface. In earlier work [12, 13J a traveling wave was found in which the free surface undergoes three sharp transitions, or internal layers, and the surfactant …


Gravity-Driven Thin Liquid Films With Insoluble Surfactant: Smooth Traveling Waves, Rachel Levy, Michael Shearer, Thomas P. Witelski Dec 2007

Gravity-Driven Thin Liquid Films With Insoluble Surfactant: Smooth Traveling Waves, Rachel Levy, Michael Shearer, Thomas P. Witelski

All HMC Faculty Publications and Research

The flow of a thin layer of fluid down an inclined plane is modified by the presence of insoluble surfactant. For any finite surfactant mass, traveling waves are constructed for a system of lubrication equations describing the evolution of the free-surface fluid height and the surfactant concentration. The one-parameter family of solutions is investigated using perturbation theory with three small parameters: the coefficient of surface tension, the surfactant diffusivity, and the coefficient of the gravity-driven diffusive spreading of the fluid. When all three parameters are zero, the nonlinear PDE system is hyperbolic/degenerateparabolic, and admits traveling wave solutions in which the …


Nonlinear Dynamics In Combinatorial Games: Renormalizing Chomp, Eric J. Friedman, Adam S. Landsberg Jun 2007

Nonlinear Dynamics In Combinatorial Games: Renormalizing Chomp, Eric J. Friedman, Adam S. Landsberg

WM Keck Science Faculty Papers

We develop a new approach to combinatorial games that reveals connections between such games and some of the central ideas of nonlinear dynamics: scaling behaviors, complex dynamics and chaos, universality, and aggregation processes. We take as our model system the combinatorial game Chomp, which is one of the simplest in a class of "unsolved" combinatorial games that includes Chess, Checkers, and Go. We discover that the game possesses an underlying geometric structure that "grows" (reminiscent of crystal growth), and show how this growth can be analyzed using a renormalization procedure adapted from physics. In effect, this methodology allows one to …


The Motion Of A Thin Liquid Film Driven By Surfactant And Gravity, Michael Shearer, Rachel Levy Jan 2006

The Motion Of A Thin Liquid Film Driven By Surfactant And Gravity, Michael Shearer, Rachel Levy

All HMC Faculty Publications and Research

We investigate wave solutions of a lubrication model for surfactant-driven flow of a thin liquid film down an inclined plane. We model the flow in one space dimension with a system of nonlinear PDEs of mixed hyperbolic-parabolic type in which the effects of capillarity and surface diffusion are neglected. Numerical solutions reveal distinct patterns of waves that are described analytically by combinations of traveling waves, some with jumps in height and surfactant concentration gradient. The various waves and combinations are strikingly different from what is observed in the case of flow on a horizontal plane. Jump conditions admit new shock …


Nonlinear Dynamics Of Mode-Locking Optical Fiber Ring Lasers, Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, J Nathan Kutz May 2002

Nonlinear Dynamics Of Mode-Locking Optical Fiber Ring Lasers, Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, J Nathan Kutz

All HMC Faculty Publications and Research

We consider a model of a mode-locked fiber ring laser for which the evolution of a propagating pulse in a birefringent optical fiber is periodically perturbed by rotation of the polarization state owing to the presence of a passive polarizer. The stable modes of operation of this laser that correspond to pulse trains with uniform amplitudes are fully classified. Four parameters, i.e., polarization, phase, amplitude, and chirp, are essential for an understanding of the resultant pulse-train uniformity. A reduced set of four coupled nonlinear differential equations that describe the leading-order pulse dynamics is found by use of the variational nature …


Scroll Waves In The Presence Of Slowly Varying Anisotropy With Application To The Heart, S. Setayeshgar, Andrew J. Bernoff Dec 2001

Scroll Waves In The Presence Of Slowly Varying Anisotropy With Application To The Heart, S. Setayeshgar, Andrew J. Bernoff

All HMC Faculty Publications and Research

We consider the dynamics of scroll waves in the presence of rotating anisotropy, a model of the left ventricle of the heart in which the orientation of fibers in successive layers of tissue rotates. By choosing a coordinate system aligned with the fiber rotation and studying the phase dynamics of a straight but twisted scroll wave, we derive a Burgers’ equation with forcing associated with the fiber rotation rate. We present asymptotic solutions for scroll twist, verified by numerics, using a realistic fiber distribution profile. We make connection with earlier numerical and analytical work on scroll dynamics.


Stability Of Self-Similar Solutions For Van Der Waals Driven Thin Film Rupture, Thomas P. Witelski, Andrew J. Bernoff Sep 1999

Stability Of Self-Similar Solutions For Van Der Waals Driven Thin Film Rupture, Thomas P. Witelski, Andrew J. Bernoff

All HMC Faculty Publications and Research

Recent studies of pinch-off of filaments and rupture in thin films have found infinite sets of first-type similarity solutions. Of these, the dynamically stable similarity solutions produce observable rupture behavior as localized, finite-time singularities in the models of the flow. In this letter we describe a systematic technique for calculating such solutions and determining their linear stability. For the problem of axisymmetric van der Waals driven rupture (recently studied by Zhang and Lister), we identify the unique stable similarity solution for point rupture of a thin film and an alternative mode of singularity formation corresponding to annular “ring rupture.”


Onset Of Superconductivity In Decreasing Fields For General Domains, Andrew J. Bernoff, Peter Sternberg Mar 1998

Onset Of Superconductivity In Decreasing Fields For General Domains, Andrew J. Bernoff, Peter Sternberg

All HMC Faculty Publications and Research

Ginzburg–Landau theory has provided an effective method for understanding the onset of superconductivity in the presence of an external magnetic field. In this paper we examine the instability of the normal state to superconductivity with decreasing magnetic field for a closed smooth cylindrical region of arbitrary cross-section subject to a vertical magnetic field. We examine the problem asymptotically in the boundary layer limit (i.e., when the Ginzburg–Landau parameter, k, is large). We demonstrate that instability first occurs in a region exponentially localized near the point of maximum curvature on the boundary. The transition occurs at a value of the …


Distortion And Evolution Of A Localized Vortex In An Irrotational Flow, Joseph F. Lingevitch, Andrew J. Bernoff May 1995

Distortion And Evolution Of A Localized Vortex In An Irrotational Flow, Joseph F. Lingevitch, Andrew J. Bernoff

All HMC Faculty Publications and Research

This paper examines the interaction of an axisymmetric vortex monopole, such as a Lamb vortex, with a background irrotational flow. At leading order, the monopole is advected with the background flow velocity at the center of vorticity. However, inhomogeneities of the flow will cause the monopole to distort. It is shown that a shear‐diffusion mechanism, familiar from the study of mixing of passive scalars, plays an important role in the evolution of the vorticity distribution. Through this mechanism, nonaxisymmetric vorticity perturbations which do not shift the center of vorticity are homogenized along streamlines on a Re1/3 time scale, much faster …


Optical Properties Of Human Uterus At 630 Nm, Steen J. Madsen, Bruce J. Tromberg, Yona Tadir, Pius Wyss, Lars O. Svaasand, Richard C. Haskell Jan 1994

Optical Properties Of Human Uterus At 630 Nm, Steen J. Madsen, Bruce J. Tromberg, Yona Tadir, Pius Wyss, Lars O. Svaasand, Richard C. Haskell

All HMC Faculty Publications and Research

The optical properties of normal and fibriotic human uteri were determined using frequency-domain and steady-state techniques .


Frequency-Domain Photon Migration In Turbid Media, Bruce J. Tromberg, Steen J. Madsen, Curtis Chapman, Lars O. Svaasand, Richard C. Haskell Jan 1994

Frequency-Domain Photon Migration In Turbid Media, Bruce J. Tromberg, Steen J. Madsen, Curtis Chapman, Lars O. Svaasand, Richard C. Haskell

All HMC Faculty Publications and Research

An analytical model is presented for the propagation of diffuse photon density waves in turbid media. The frequency- and wavelength-dependence of photon density waves are measured using Frequency-domain Photon Migration (FDPM). Media optical properties, including absorption, transport, and fluorescence relaxation times are calculated from experimental results.