Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chapman University

2020

Discipline
Keyword
Publication

Articles 1 - 14 of 14

Full-Text Articles in Physics

What Is Nonlocal In Counterfactual Quantum Communication?, Yakir Aharonov, Daniel Rohrlich Dec 2020

What Is Nonlocal In Counterfactual Quantum Communication?, Yakir Aharonov, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

We revisit the “counterfactual quantum communication” of Salih et al. [1], who claim that an observer “Bob” can send one bit of information to a second observer “Alice” without any physical particle traveling between them. We show that a locally conserved, massless current—specifically, a current of modular angular momentum, Lz mod 2ℏ—carries the one bit of information. We integrate the flux of Lz mod 2ℏ from Bob to Alice and show that it equals one of the two eigenvalues of Lz mod 2ℏ, either 0 or ℏ, thus precisely accounting for the one bit of information he sends her.We previously …


Retention Of Rising Oil Droplets In Density Stratification, Tracy L. Mandel, De Zhen Zhou, Lindsay Waldrop, Maxime Theillard, Dustin Kleckner, Shilpa Khatri Dec 2020

Retention Of Rising Oil Droplets In Density Stratification, Tracy L. Mandel, De Zhen Zhou, Lindsay Waldrop, Maxime Theillard, Dustin Kleckner, Shilpa Khatri

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, we present results from experiments on the retention of single oil droplets rising through a two-layer density stratification, with the goal of quantifying and parametrizing the impact of stratification on timescales that describe the delay in rising. These experiments confirm the significant slowdown observed in past literature of settling and rising particles and droplets in stratification, and these are the first experiments to study single liquid droplets as opposed to solid particles or bubbles. By tracking the motion of the droplets as they rise through a stratified fluid, we identify two new timescales which quantitatively describe this …


Always-On Quantum Error Tracking With Continuous Parity Measurements, Razieh Mohseninia, Jing Yang, Irfan Siddiqi, Andrew N. Jordan, Justin Dressel Nov 2020

Always-On Quantum Error Tracking With Continuous Parity Measurements, Razieh Mohseninia, Jing Yang, Irfan Siddiqi, Andrew N. Jordan, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

We investigate quantum error correction using continuous parity measurements to correct bit-flip errors with the three-qubit code. Continuous monitoring of errors brings the benefit of a continuous stream of information, which facilitates passive error tracking in real time. It reduces overhead from the standard gate-based approach that periodically entangles and measures additional ancilla qubits. However, the noisy analog signals from continuous parity measurements mandate more complicated signal processing to interpret syndromes accurately. We analyze the performance of several practical filtering methods for continuous error correction and demonstrate that they are viable alternatives to the standard ancilla-based approach. As an optimal …


Possible Superconductivity Above 40 K In Rhenium-Doped Strontium Ruthenates Indicated By Fourier-Transform Infrared Spectroscopy, Yurii Aleschenko, Boris Gorshunov, Elena Zhukova, Andrey Muratov, Alexander Dudka, Rajendra Dulal, Serafim Teknowijoyo, Sara Chahid, Vahan Nikoghosyan, Armen Gulian Oct 2020

Possible Superconductivity Above 40 K In Rhenium-Doped Strontium Ruthenates Indicated By Fourier-Transform Infrared Spectroscopy, Yurii Aleschenko, Boris Gorshunov, Elena Zhukova, Andrey Muratov, Alexander Dudka, Rajendra Dulal, Serafim Teknowijoyo, Sara Chahid, Vahan Nikoghosyan, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

Strontium ruthenates have a lot of similarities with copper oxide superconductors and are a very interesting object for investigation of mechanisms and conditions which lead to high-temperature superconductivity. We report here on multiple experimental indications of superconductivity with the onset above 40K in strontium ruthenate doped by rhenium and selenium with chlorine used as a flux. The main experimental evidence comes from FTIR spectroscopy of this material followed by the ac and dc magnetization, as well as its heat capacity and magnetoresistance. Structural and morphological studies reveal the heterophase nature of this polycrystalline material as well as changes of lattice …


The Operational Choi-Jamio Lkowski Isomorphism, Emily Adlam Sep 2020

The Operational Choi-Jamio Lkowski Isomorphism, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, I use an operational formulation of the Choi–Jamiołkowski isomorphism to explore an approach to quantum mechanics in which the state is not the fundamental object. I first situate this project in the context of generalized probabilistic theories and argue that this framework may be understood as a means of drawing conclusions about the intratheoretic causal structure of quantum mechanics which are independent of any specific ontological picture. I then give an operational formulation of the Choi–Jamiołkowski isomorphism and show that, in an operational theory which exhibits this isomorphism, several features of the theory which are usually regarded …


A Twist On Broken U(3) × U(3) Supersymmetry, Scott Chapman Aug 2020

A Twist On Broken U(3) × U(3) Supersymmetry, Scott Chapman

Mathematics, Physics, and Computer Science Faculty Articles and Research

What symmetry breaking would be required for gauginos from a supersymmetric theory to behave like left-handed quarks of the Standard Model? Starting with a supersymmetric SU(3)xSU(3)xU(1)xU(1) gauge theory, the 18 adjoint-representation gauginos are replaced with 2 families of 9 gauginos in the (3,3*) representation of the group. After this explicit breaking of supersymmetry, two-loop quadratic divergences still cancel at a unification scale. Coupling constant unification is supported by deriving the theory from an SU(3)xSU(3)xSU(3)xSU(3) Grand Unified Theory (GUT). Sin2 of the Weinberg angle for the GUT is 1/4 rather than 3/8, leading to a lower unification scale than usually …


Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue Aug 2020

Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue

SURF Posters and Papers

Catalysis provides pathways for efficient and selective chemical reactions by lowering the energy barriers for desired products. Gold nanoparticles (AuNPs) show excellent promise as plasmonic catalysts. Plasmonic materials have localized surface plasmon resonances, oscillations of the electron bath at the surface of a nanoparticle, that generate energetically intense electric fields which rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize atoms strongly bound to the catalysts through occupation of antibonding orbitals. Tuning the antibonding orbitals to make them accessible for occupancy by electrons is achieved by coating the AuNP in a thin layer of another …


Noncontextuality Inequalities From Antidistinguishability, Matthew S. Leifer, Cristhiano Duarte Jun 2020

Noncontextuality Inequalities From Antidistinguishability, Matthew S. Leifer, Cristhiano Duarte

Mathematics, Physics, and Computer Science Faculty Articles and Research

Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e., their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13-ray noncontextuality inequality can be rederived and generalized as an instance of our antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally complete positive operator-valued measures. Antidistinguishability based inequalities were initially discovered as overlap bounds for the …


Acoustic Versus Electromagnetic Field Theory: Scalar, Vector, Spinor Representations And The Emergence Of Acoustic Spin, Lucas Burns, Konstantin Y. Bliokh, Franco Nori, Justin Dressel May 2020

Acoustic Versus Electromagnetic Field Theory: Scalar, Vector, Spinor Representations And The Emergence Of Acoustic Spin, Lucas Burns, Konstantin Y. Bliokh, Franco Nori, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

We construct a novel Lagrangian representation of acoustic field theory that describes the local vector properties of longitudinal (curl-free) acoustic fields. In particular, this approach accounts for the recently-discovered nonzero spin angular momentum density in inhomogeneous sound fields in fluids or gases. The traditional acoustic Lagrangian representation with a scalar potential is unable to describe such vector properties of acoustic fields adequately, which are however observable via local radiation forces and torques on small probe particles. By introducing a displacement vector potential analogous to the electromagnetic vector potential, we derive the appropriate canonical momentum and spin densities as conserved Noether …


Integrated Photonic Device, Brittney Kuhn May 2020

Integrated Photonic Device, Brittney Kuhn

Student Scholar Symposium Abstracts and Posters

In computer mediated communication networks, information is typically encoded optically to transmit signals over long distances. At a network node, the optical signal is transformed into the electrical domain, processed electronically, and transformed back to an optical state to reach its destination. Transitioning between optical and electrical encoding of the signal is a potential security weak point, especially for quantum communication links. If information can remain in one state as it travels through the network, then security breaches can be detected and dealt with more easily. Furthermore, keeping the information in one state can reduce power consumption in the network. …


Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue May 2020

Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue

Student Scholar Symposium Abstracts and Posters

Catalysis provides pathways for efficient and selective chemical reactions through the lowering of energy barriers for desired products. Gold nanoparticles (AuNP) show excellent promise as plasmonic catalysts. Localized surface plasmon resonances are oscillations of the electron bath at the surface of a nanoparticle that generate energetically intense electric fields and rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize strongly bound oxygen atoms through occupation of accessible anti-bonding orbitals. Tuning the anti-bonding orbitals to make them accessible for occupancy will be achieved by coating the AuNP in a thin layer of another transition metal, such …


Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell Apr 2020

Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell

Mathematics, Physics, and Computer Science Faculty Articles and Research

It is shown that, in some cases, the effect of discrete distributions of flux lines in quantum mechanics can be associated with the effect of continuous distributions of magnetic fields with special symmetries. In particular, flux lines with an arbitrary value of magnetic flux can be used to create energetic barriers, which can be used to confine quantum systems in specially designed configurations. This generalizes a previous work where such energy barriers arose from flux lines with half-integer fluxons. Furthermore, it is shown how the Landau levels can be obtained from a two-dimensional grid of flux lines. These results suggest …


Footprints Of Quantum Pigeons, Gregory Reznick, Shrobona Bagchi, Justin Dressel, Lev Vaidman Apr 2020

Footprints Of Quantum Pigeons, Gregory Reznick, Shrobona Bagchi, Justin Dressel, Lev Vaidman

Mathematics, Physics, and Computer Science Faculty Articles and Research

We show that in the mathematical framework of the quantum theory, the classical pigeonhole principle can be violated more directly than previously suggested, i.e., in a setting closer to the traditional statement of the principle. We describe how the counterfactual reasoning of the paradox may be operationally grounded in the analysis of the tiny footprints left in the environment by the pigeons. After identifying the drawbacks of recent experiments of the quantum pigeonhole effect, we argue that a definitive experimental violation of the pigeonhole principle is still needed and propose such an implementation using modern quantum computing hardware: a superconducting …


Reformulating Bell's Theorem: The Search For A Truly Local Quantum Theory, Mordecai Waegell, Kelvin J. Mcqueen Mar 2020

Reformulating Bell's Theorem: The Search For A Truly Local Quantum Theory, Mordecai Waegell, Kelvin J. Mcqueen

Philosophy Faculty Articles and Research

The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. (1935) and Bell (1964) emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's “no-go” theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the experimentally confirmed entanglement correlations, we make clear that it is the conjunction of the …