Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

2013

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 713

Full-Text Articles in Physics

A Model For The Hysteresis Observed In Gating Of Lysenin Channels, Eric Krueger, Radwan Al Faouri, Daniel Fologea, Ralph Henry, David Straub, Greg J. Salamo Dec 2013

A Model For The Hysteresis Observed In Gating Of Lysenin Channels, Eric Krueger, Radwan Al Faouri, Daniel Fologea, Ralph Henry, David Straub, Greg J. Salamo

Physics Faculty Publications and Presentations

The pore-forming toxin lysenin self-inserts to form conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels exhibit voltage regulation and hysteresis of the macroscopic current during the application of positive periodic voltage stimuli. We explored the bi-stable behavior of lysenin channels and present a theoretical approach for the mechanism of the hysteresis to explain its static and dynamic components. This investigation develops a model to incorporate the role of charge accumulation on the bilayer lipid membrane in influencing the channel conduction state. Our model is supported by experimental results and also provides insight into the temperature …


Evolution Of Magnetism In The Single-Crystal Honeycomb Iridates (Na1−XLiX)2Iro3, Gang Cao, Tongfei Qi, L. Li, Jsaminka Terzic, Vincent Shian Cao, Shujuan Yuan, M. Tovar, Ganpathy Murthy, Ribhu K. Kaul Dec 2013

Evolution Of Magnetism In The Single-Crystal Honeycomb Iridates (Na1−XLiX)2Iro3, Gang Cao, Tongfei Qi, L. Li, Jsaminka Terzic, Vincent Shian Cao, Shujuan Yuan, M. Tovar, Ganpathy Murthy, Ribhu K. Kaul

Physics and Astronomy Faculty Publications

We report the successful synthesis of single crystals of the layered iridate (Na1−xLix)2IrO3, 0 ≤ x ≤ 0.9, and a thorough study of its structural, magnetic, thermal, and transport properties. This compound allows a controlled interpolation between Na2IrO3 and Li2IrO3, while maintaining the quantum magnetism of the honeycomb Ir4+ planes. The measured phase diagram demonstrates a suppression of the Néel temperature TN at an intermediate x, indicating that the magnetic orders in Na2IrO3 and Li2IrO3 …


Planar Anchoring Strength And Pitch Measurements In Achiral And Chiral Chromonic Liquid Crystals Using 90-Degree Twist Cells, Christine K. Mcginn , '16, Laura I. Laderman , '15, N. Zimmermann, H.-S. Kitzerow, Peter J. Collings Dec 2013

Planar Anchoring Strength And Pitch Measurements In Achiral And Chiral Chromonic Liquid Crystals Using 90-Degree Twist Cells, Christine K. Mcginn , '16, Laura I. Laderman , '15, N. Zimmermann, H.-S. Kitzerow, Peter J. Collings

Physics & Astronomy Faculty Works

Chromonic liquid crystals are formed by molecules that spontaneously assemble into anisotropic structures in water. The ordering unit is therefore a molecular assembly instead of a molecule as in thermotropic liquid crystals. Although it has been known for a long time that certain dyes, drugs, and nucleic acids form chromonic liquid crystals, only recently has enough knowledge been gained on how to control their alignment so that studies of their fundamental liquid crystal properties can be performed. In this article, a simple method for producing planar alignment of the nematic phase in chromonic liquid crystals is described, and this in …


Determining The 7li(N,Gamma) Cross Section Via Coulomb Dissociation Of 8li, R. Izsak, A. Horvath, A. Kiss, Z. Seres, A. Galonsky, C. A. Bertulani, Zs Fueloep, T. Baumann, D. Bazin, K. Ieki, C. Bordeanu, N. Carlin, M. Csanád, F. Deák, Paul A. Deyoung, N. Frank, T. Fukuchi, A. Gade, D. Galaviz, C. R. Hoffman, W. A. Peters, H. Schelin, M. Thoennessen, G. I. Veres Dec 2013

Determining The 7li(N,Gamma) Cross Section Via Coulomb Dissociation Of 8li, R. Izsak, A. Horvath, A. Kiss, Z. Seres, A. Galonsky, C. A. Bertulani, Zs Fueloep, T. Baumann, D. Bazin, K. Ieki, C. Bordeanu, N. Carlin, M. Csanád, F. Deák, Paul A. Deyoung, N. Frank, T. Fukuchi, A. Gade, D. Galaviz, C. R. Hoffman, W. A. Peters, H. Schelin, M. Thoennessen, G. I. Veres

Faculty Publications

The applicability of Coulomb dissociation reactions to determine the cross section for the inverse neutron capture reaction was explored using the reaction Li-8(gamma,n)Li-7. A 69.5 MeV/nucleon Li-8 beam was incident on a Pb target, and the outgoing neutron and Li-7 nucleus were measured in coincidence. The deduced (n,gamma) excitation function is consistent with data for the direct capture reaction Li-7(n,gamma) Li-8 and with low-energy effective field theory calculations.


Molecular Hydrogen Regulated Star Formation In Cosmological Smoothed Particle Hydrodynamics Simulations, Robert Thompson, Kentaro Nagamine, Jason Jaacks, Jun-Hwan Choi Dec 2013

Molecular Hydrogen Regulated Star Formation In Cosmological Smoothed Particle Hydrodynamics Simulations, Robert Thompson, Kentaro Nagamine, Jason Jaacks, Jun-Hwan Choi

Physics and Astronomy Faculty Publications

Some observations have shown that star formation (SF) correlates tightly with the presence of molecular hydrogen (H2); therefore, it is important to investigate its implication on galaxy formation in a cosmological context. In the present work, we implement a sub-grid model (hereafter H2-SF model) that tracks the H2 mass fraction within our cosmological smoothed particle hydrodynamics code GADGET-3 by using an equilibrium analytic model of Krumholz et al. This model allows us to regulate the SF in our simulation by the local abundance of H2 rather than the total cold gas density, which naturally …


Automated Annotation Of Functional Imaging Experiments Via Multi-Label Classification, Matthew D. Turner, Chayan Chakrabarti, Thomas B. Jones, Jiawei F. Xu, Peter T. Fox, George F. Luger, Angela Laird, Jessica A. Turner Dec 2013

Automated Annotation Of Functional Imaging Experiments Via Multi-Label Classification, Matthew D. Turner, Chayan Chakrabarti, Thomas B. Jones, Jiawei F. Xu, Peter T. Fox, George F. Luger, Angela Laird, Jessica A. Turner

Department of Physics

Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, …


Weak Interaction Studies Ith 6He, A. Knecht, Z. T. Alexander, Y. Bagdasarova, T. M. Cope, B. G. Delbridge, X. Fléchard, A. García, R. Hong, E. Liénard, P. Mueller, O. Naviliat-Cuncic, A. S.C. Palmer, R. G.H. Robertson, D. W. Storm, H. E. Swanson, S. Utsuno, F. Wauters, William Williams, C. Wrede, D. W. Zumwalt Dec 2013

Weak Interaction Studies Ith 6He, A. Knecht, Z. T. Alexander, Y. Bagdasarova, T. M. Cope, B. G. Delbridge, X. Fléchard, A. García, R. Hong, E. Liénard, P. Mueller, O. Naviliat-Cuncic, A. S.C. Palmer, R. G.H. Robertson, D. W. Storm, H. E. Swanson, S. Utsuno, F. Wauters, William Williams, C. Wrede, D. W. Zumwalt

Physics: Faculty Publications

The 6He nucleus is an ideal candidate to study the weak interaction. To this end we have built a high-intensity source of 6He delivering ∼1010 atoms/s to experiments. Taking full advantage of that available intensity we have performed a high-precision measurement of the 6He half-life that directly probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a measurement of the beta-neutrino angular correlation in 6He beta decay that will allow to search for new physics beyond the Standard Model in the form of tensor currents. © 2013 AIP Publishing LLC.


Direct Coupling Of Photonic Modes And Surface Plasmon Polaritons Observed In 2-Photon Peem, Robert Campbell Word, Joseph Fitzgerald, Rolf Könenkamp Dec 2013

Direct Coupling Of Photonic Modes And Surface Plasmon Polaritons Observed In 2-Photon Peem, Robert Campbell Word, Joseph Fitzgerald, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report the direct microscopic observation of optical energy transfer from guided photonic modes in an indium tin oxide (ITO) thin film to surface plasmon polaritons (SPP) at the surfaces of a single crystalline gold platelet. The photonic and SPP modes appear as an interference pattern in the photoelectron emission yield across the surface of the specimen. We explore the momentum match between the photonic and SPP modes in terms of simple waveguide theory and the three-layer slab model for bound SPP modes of thin metal films. We show that because the gold is thin (30- 40 nm), two SPP …


Atomic Data For S Ii—Toward Better Diagnostics Of Chemical Evolution In High-Redshift Galaxies, Romas Kisielius, Varsha P. Kulkarni, Gary J. Ferland, Pavel Bogdanovich, Matt L. Lykins Dec 2013

Atomic Data For S Ii—Toward Better Diagnostics Of Chemical Evolution In High-Redshift Galaxies, Romas Kisielius, Varsha P. Kulkarni, Gary J. Ferland, Pavel Bogdanovich, Matt L. Lykins

Physics and Astronomy Faculty Publications

Absorption-line spectroscopy is a powerful tool used to estimate element abundances in both the nearby and distant universe. The accuracy of the abundances thus derived is naturally limited by the accuracy of the atomic data assumed for the spectral lines. We have recently started a project to perform new extensive atomic data calculations used for optical/UV spectral lines in the plasma modeling code Cloudy using state of the art quantal calculations. Here, we demonstrate our approach by focussing on S II, an ion used to estimate metallicities for Milky Way interstellar clouds as well as distant damped Lyman-alpha (DLA) and …


Physics 2710 – Example Exam Iii, David Peak Dec 2013

Physics 2710 – Example Exam Iii, David Peak

Exams

No abstract provided.


Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Dec 2013

Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km. The lidar consisted of a 0.44-m diameter mirror, a frequency-doubled Nd:YAG laser opera'ng at 532-nm at 30- Hz at either 18- or 24-W, giving power- aperture products (PAPs) of 2.7- or 3.6- Wm2, respec'vely, and one detector channel. An example of what was accomplished with this system is shown as part of Fig. 1. The temperature climatology was based on ~5000 hours …


Sensitivity Curves For Searches For Gravitational-Wave Backgrounds, E. H. Thrane, Joseph D. Romano Dec 2013

Sensitivity Curves For Searches For Gravitational-Wave Backgrounds, E. H. Thrane, Joseph D. Romano

Physics and Astronomy Faculty Publications and Presentations

We propose a graphical representation of detector sensitivity curves for stochastic gravitational-wave backgrounds that takes into account the increase in sensitivity that comes from integrating over frequency in addition to integrating over time. This method is valid for backgrounds that have a power-law spectrum in the analysis band. We call these graphs “power-law integrated curves.” For simplicity, we consider cross-correlation searches for unpolarized and isotropic stochastic backgrounds using two or more detectors. We apply our method to construct power-law integrated sensitivity curves for second-generation ground-based detectors such as Advanced LIGO, space-based detectors such as LISA and the Big Bang Observer, …


Can Bohmian Mechanics Be Made Relativistic?, Detlef Dürr, Sheldon Goldstein, Travis Norsen, Ward Struyve, Nino Zaghì Dec 2013

Can Bohmian Mechanics Be Made Relativistic?, Detlef Dürr, Sheldon Goldstein, Travis Norsen, Ward Struyve, Nino Zaghì

Physics: Faculty Publications

In relativistic space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time. The introduction of such a foliation – as extra absolute space-time structure – would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also …


Structure And Dynamics Of Self-Assembling Colloidal Monolayers In Oscillating Magnetic Fields, Alison E. Patteson (Koser), Nathan C. Keim, Paulo E. Arratia Dec 2013

Structure And Dynamics Of Self-Assembling Colloidal Monolayers In Oscillating Magnetic Fields, Alison E. Patteson (Koser), Nathan C. Keim, Paulo E. Arratia

Physics - All Scholarship

Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing, and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an important role on the emergence of collective behavior. Here, we experimentally investigate their role in the dynamics of self-assembling magnetically driven colloidal particles which can rapidly form organized hexagonal structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly decrease the rate of cluster formation, all while …


Photoacoustic And Nephelometric Spectroscopy Of Aerosol Optical Properties With A Supercontinuum Light Source, Neha Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni Dec 2013

Photoacoustic And Nephelometric Spectroscopy Of Aerosol Optical Properties With A Supercontinuum Light Source, Neha Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni

Michigan Tech Publications

A novel multi-wavelength photoacousticnephelometer spectrometer (SC-PNS) has been developed for the optical characterization of atmospheric aerosol particles. This instrument integrates a white light supercontinuum laser with photoacoustic and nephelometric spectroscopy to measure aerosol absorption and scattering coefficients at five wavelength bands (centered at 417, 475, 542, 607, and 675 nm). These wavelength bands are selected from the continuous spectrum of the laser (ranging from 400-2200 nm) using a set of optical interference filters. Absorption and scattering measurements on laboratory-generated aerosol samples were performed sequentially at each wavelength band. To test the instrument we measured the wavelength dependence of absorption and …


Capillary Channel Flow Experiments Aboard The International Space Station, Michael Conrath, P. J. Canfield, P. M. Bronowicki, Michael E. Dreyer, Mark M. Weislogel, A. Grah Dec 2013

Capillary Channel Flow Experiments Aboard The International Space Station, Michael Conrath, P. J. Canfield, P. M. Bronowicki, Michael E. Dreyer, Mark M. Weislogel, A. Grah

Mechanical and Materials Engineering Faculty Publications and Presentations

In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments …


Universal Quantum Fluctuations Of A Cavity Mode Driven By A Josephson Junction, A. D. Armour, M. P. Blencowe, E. Brahimi, A. J. Rimberg Dec 2013

Universal Quantum Fluctuations Of A Cavity Mode Driven By A Josephson Junction, A. D. Armour, M. P. Blencowe, E. Brahimi, A. J. Rimberg

Dartmouth Scholarship

We analyze the quantum dynamics of a superconducting cavity coupled to a voltage-biased Josephson junction. The cavity is strongly excited at resonances where the voltage energy lost by a Cooper pair traversing the circuit is a multiple of the cavity photon energy. We find that the resonances are accompanied by substantial squeezing of the quantum fluctuations of the cavity over a broad range of parameters and are able to identify regimes where the fluctuations in the system take on universal values.


Determination Of The Top-Quark Pole Mass And Strong Coupling Constant From The T T-Bar Production Cross Section In Pp Collisions At Sqrt(S) = 7 Tev, Cms Collaboration, Vanessa Gaultney, Samantha Hewamanage, Stephan Linn, Pete E. Markowitz, German Martinez, Jorge Luis Rodriguez Dec 2013

Determination Of The Top-Quark Pole Mass And Strong Coupling Constant From The T T-Bar Production Cross Section In Pp Collisions At Sqrt(S) = 7 Tev, Cms Collaboration, Vanessa Gaultney, Samantha Hewamanage, Stephan Linn, Pete E. Markowitz, German Martinez, Jorge Luis Rodriguez

Department of Physics

The inclusive cross section for top-quark pair production measured by the CMS experiment in proton–proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, m[pole over t], or the strong coupling constant, α[subscript S]. With the parton distribution function set NNPDF2.3, a pole mass of 176.7[+3.8 over −3.4] GeV is obtained when constraining α[subscript S] at the scale of the Z boson mass, m[subscript Z], to the current world average. Alternatively, by constraining m[pole over t] to the latest average from …


The Progenitors Of The Compact Early-Type Galaxies At High Redshift, Christina C. Williams, Mauro Giavalisco, Paolo Cassata, Elena Tundo, Tommy Wiklind, Yicheng Guo, Bomee Lee, Guillermo Barro, Stijn Wuyts, Eric F. Bell, Christopher J. Conselice, Avishai Dekel, Sandra M. Faber, Henry C. Ferguson, Norman A. Grogin, Nimish Hathi, Kuang-Han Huang, Dalibor D. Kocevski, Anton M. Koekemoer, David C. Koo, Swara Ravindranath, Sarah Salimbeni Dec 2013

The Progenitors Of The Compact Early-Type Galaxies At High Redshift, Christina C. Williams, Mauro Giavalisco, Paolo Cassata, Elena Tundo, Tommy Wiklind, Yicheng Guo, Bomee Lee, Guillermo Barro, Stijn Wuyts, Eric F. Bell, Christopher J. Conselice, Avishai Dekel, Sandra M. Faber, Henry C. Ferguson, Norman A. Grogin, Nimish Hathi, Kuang-Han Huang, Dalibor D. Kocevski, Anton M. Koekemoer, David C. Koo, Swara Ravindranath, Sarah Salimbeni

Physics and Astronomy Faculty Publications

We use GOODS and CANDELS images to identify progenitors of massive (M > 1010 M ) compact early-type galaxies (ETGs) at z ~ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ~ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ~ 1.6. We find that …


The Unexpectedly Bright Comet C/2012 F6 (Lemmon) Unveiled At Near-Infrared Wavelengths, Lucas Paganini, Michael Disanti, Michael Mumma, Geronimo Villanueva, Boncho Bonev, Jacqueline Keane, Erika Gibb, Hermann Boehnhardt, Karen Meech Dec 2013

The Unexpectedly Bright Comet C/2012 F6 (Lemmon) Unveiled At Near-Infrared Wavelengths, Lucas Paganini, Michael Disanti, Michael Mumma, Geronimo Villanueva, Boncho Bonev, Jacqueline Keane, Erika Gibb, Hermann Boehnhardt, Karen Meech

Physics Faculty Works

We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R h) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R h = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R h = 0.75 AU with CSHELL (on March 31 and April 1) and R h = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H2O, OH* prompt emission, C2H6, CH3OH, H2CO, HCN, CO, CH4, …


Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai Dec 2013

Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, …


Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion Dec 2013

Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion

Publications

Asymptotic multi-layer analyses and computation of solutions for turbulent flows over steady and unsteady monochromatic surface wave are reviewed, in the limits of low turbulent stresses and small wave amplitude. The structure of the flow is defined in terms of asymptotically-matched thin-layers, namely the surface layer and a critical layer, whether it is ‘elevated’ or ‘immersed’, corresponding to its location above or within the surface layer. The results particularly demonstrate the physical importance of the singular flow features and physical implications of the elevated critical layer in the limit of the unsteadiness tending to zero. These agree with the variational …


Polarization-Coupled Transport Behavior In Ultrathin Ferroelectric Heterostructures, Haidong Lu Dec 2013

Polarization-Coupled Transport Behavior In Ultrathin Ferroelectric Heterostructures, Haidong Lu

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Ferroelectric polarization-coupled resistive switching behavior in ferroelectric tunnel junctions (FTJs), the tunneling electroresistance (TER) effect, is a recently predicted new phenomenon, which attracts interest due to potential application in the next generation non-volatile ferroelectric random access memories (FeRAMs). In this dissertation, we demonstrate the TER effect in FTJ devices by means of scanning probe microscopy (SPM) techniques. We have investigated several device configurations for enhancement of polarization stability and for demonstration of the resistive switching behavior: (i) using the SPM probe as a top electrode; (ii) using heterostructures with engineered interfacial atomic terminations; (iii) using metal electrodes; (iv) adding an …


Electron-Impact Vibrational Excitation Of Vibrationally Excited H2 Molecules Involving The Resonant 2(Sigma)G+ Rydberg-Excited Electronic State, R Celiberto, R. K. Janev, V Laporta, J Tennyson, J. M. Wadehra Dec 2013

Electron-Impact Vibrational Excitation Of Vibrationally Excited H2 Molecules Involving The Resonant 2(Sigma)G+ Rydberg-Excited Electronic State, R Celiberto, R. K. Janev, V Laporta, J Tennyson, J. M. Wadehra

Physics and Astronomy Faculty Research Publications

Electron-impact theoretical cross sections and rate coefficients for vibrational excitation of vibrationally excited H2 molecules, occurring through the H−2 resonant species in the 2Σ+g Rydberg-excited electronic state, are presented. The cross sections are calculated as functions of the incident electron energy by adopting the local-complex-potential model for resonant collisions and by using ab initio calculated molecular potentials and resonance widths. The calculations have been extended to all possible vibrational transitions linking all 15 vibrational levels of the electronic ground state of the H2 molecule. The corresponding rate coefficients are also obtained as a function of the electron temperature by assuming …


National Physics Association Honors Spalding, Kim Hill Dec 2013

National Physics Association Honors Spalding, Kim Hill

News and Events

No abstract provided.


Effects Of External Radiation Fields On Line Emission—Application To Star-Forming Regions, Marios Chatzikos, Gary J. Ferland, R. J. R. Williams, Ryan Porter, P. A. M. Vanhoof Dec 2013

Effects Of External Radiation Fields On Line Emission—Application To Star-Forming Regions, Marios Chatzikos, Gary J. Ferland, R. J. R. Williams, Ryan Porter, P. A. M. Vanhoof

Physics and Astronomy Faculty Publications

A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous …


Measurement Of The Differential And Double-Differential Drell-Yan Cross Sections In Proton-Proton Collisions At S√ = 7 Tev, The Cms Collaboration, S. Chatrchyan, V. Khachatryan, Marc M. Baarmand, B. Dorney, Marcus Hohlmann, Himali Kalakhety, Francisco Yumiceva Dec 2013

Measurement Of The Differential And Double-Differential Drell-Yan Cross Sections In Proton-Proton Collisions At S√ = 7 Tev, The Cms Collaboration, S. Chatrchyan, V. Khachatryan, Marc M. Baarmand, B. Dorney, Marcus Hohlmann, Himali Kalakhety, Francisco Yumiceva

Aerospace, Physics, and Space Science Faculty Publications

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5 (4.8) fb−1 in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at s" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">s√� = 7 TeV. The measured inclusive cross section in the Z-peak region (60–120 GeV) is σ(ℓℓ) = 986.4 ± 0.6 (stat.) ± 5.9 (exp. …


An Early And Comprehensive Millimetre And Centimetre Wave And X-Ray Study Of Sn 2011dh: A Non-Equipartition Blast Wave Expanding Into A Massive Stellar Wind, Assaf Horesh, Christopher Stockdale, Derek B. Fox, Dale A. Frail, John Carpenter, S. R. Kulkarni, Eran O. Ofek, Avishay Gal-Yam, Mansi M. Kasliwal, Iair Arcavi, Robert Quimby, S. Bradley Cenko, Peter E. Nugent, Joshua S. Bloom, Nicholas M. Law, Dovi Poznanski, Evgeny Gorbikov, David Polishook, Ofer Yaron, Stuart Ryder, Kurt W. Weiler, Franz Bauer, Schuyler D. Van Dyk, Stefan Immler, Nino Panagia, Dave Pooley, Namir Kassim Dec 2013

An Early And Comprehensive Millimetre And Centimetre Wave And X-Ray Study Of Sn 2011dh: A Non-Equipartition Blast Wave Expanding Into A Massive Stellar Wind, Assaf Horesh, Christopher Stockdale, Derek B. Fox, Dale A. Frail, John Carpenter, S. R. Kulkarni, Eran O. Ofek, Avishay Gal-Yam, Mansi M. Kasliwal, Iair Arcavi, Robert Quimby, S. Bradley Cenko, Peter E. Nugent, Joshua S. Bloom, Nicholas M. Law, Dovi Poznanski, Evgeny Gorbikov, David Polishook, Ofer Yaron, Stuart Ryder, Kurt W. Weiler, Franz Bauer, Schuyler D. Van Dyk, Stefan Immler, Nino Panagia, Dave Pooley, Namir Kassim

Physics Faculty Research and Publications

Only a handful of supernovae (SNe) have been studied in multiwavelengths from the radio to X-rays, starting a few days after the explosion. The early detection and classification of the nearby Type IIb SN 2011dh/PTF 11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at one of the youngest phase ever of a core-collapse SN (days 3–12 after the explosion) in the radio, millimetre and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Our analysis shows that the expanding …


Gravitational And Electromagnetic Waves On The Null Cone, Maria Babiuc-Hamilton Dec 2013

Gravitational And Electromagnetic Waves On The Null Cone, Maria Babiuc-Hamilton

Physics Faculty Research

Gravitational radiation is properly defined only at future null infinity, but mathematically it is estimated at a finite radius, and then extrapolated. Our group developed a characteristic waveform extraction tool, implemented in an open source code, which computes the gravitational waves infinitely far from their source, in terms of compactified null cones, by numerically solving Einstein equation. We add electromagnetic waves to the null cone, by deriving a formulation of the Einstein-Maxwell equations suitable to be numerically implemented into a characteristic code, that will evolve and calculate both the gravitational waves and their electromagnetic counterparts all the way to infinity.


Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Jeffrey W. Oliver, Revecca Vincelette, Gary Noojin, Clifton D. Clark, Corey Harbert, Kurt J. Schuster, Aurora D. Schingledecker, Semih S. Kumru, Justin Maughan, Naomi Kitzis, Gavin D. Buffington, David J. Stolarski, Robert J. Thomas Dec 2013

Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Jeffrey W. Oliver, Revecca Vincelette, Gary Noojin, Clifton D. Clark, Corey Harbert, Kurt J. Schuster, Aurora D. Schingledecker, Semih S. Kumru, Justin Maughan, Naomi Kitzis, Gavin D. Buffington, David J. Stolarski, Robert J. Thomas

Physics Faculty Publications

A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of opticalthermal interaction. …