Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Comment On "Role Of Potentials In The Aharonov-Bohm Effect", Yakir Aharonov, Eliahu Cohen, Daniel Rohrlich Aug 2015

Comment On "Role Of Potentials In The Aharonov-Bohm Effect", Yakir Aharonov, Eliahu Cohen, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

Are the electromagnetic scalar and vector potentials dispensable? Vaidman [Phys. Rev. A 86, 040101(R) (2012)] has suggested that local interactions of gauge-invariant quantities, e.g., magnetic torques, suffice for the description of all quantum electromagnetic phenomena. We analyze six thought experiments that challenge this suggestion. All of them have explanations in terms of local interactions of gauge-dependent quantities, and, in addition, some have explanations in terms of nonlocal interactions of gauge-invariant quantities. We claim, however, that two of our examples have no gauge-invariant formal description and that, in general, no local description can dispense with electromagnetic potentials.


Dynamical Features Of Interference Phenomena In The Presence Of Entanglement, Tirzah Kaufherr, Yakir Aharonov, Shmuel Nussinov, Sandu Popescu, Jeff Tollaksen Jan 2011

Dynamical Features Of Interference Phenomena In The Presence Of Entanglement, Tirzah Kaufherr, Yakir Aharonov, Shmuel Nussinov, Sandu Popescu, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or "private" potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are "private" potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well …


Quantum Interference Experiments, Modular Variables And Weak Measurements, Jeff Tollaksen, Yakir Aharonov, Aharon Casher, Tirzah Kaufherr, Shmuel Nussinov Jan 2010

Quantum Interference Experiments, Modular Variables And Weak Measurements, Jeff Tollaksen, Yakir Aharonov, Aharon Casher, Tirzah Kaufherr, Shmuel Nussinov

Mathematics, Physics, and Computer Science Faculty Articles and Research

We address the problem of interference using the Heisenberg picture and highlight some new aspects through the use of pre-selection, post-selection, weak measurements and modular variables. We present a physical explanation for the different behaviors of a single particle when the distant slit is open or closed; instead of having a quantum wave that passes through all slits, we have a localized particle with non-local interactions with the other slit(s). We introduce a Gedanken experiment to measure this non-local exchange. While the Heisenberg and Schrodinger pictures are equivalent formulations of quantum mechanics, nevertheless, the results discussed here support a new …


Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson Mar 2006

Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson

Dartmouth Scholarship

We investigate the properties of Q-balls in d spatial dimensions. First, a generalized virial relation for these objects is obtained. We then focus on potentials V(ϕϕ†)=∑3n=1an(ϕϕ†)n, where an is a constant and n is an integer, obtaining variational estimates for their energies for arbitrary charge Q. These analytical estimates are contrasted with numerical results and their accuracy evaluated. Based on the results, we offer a simple criterion to classify large and small d-dimensional Q-balls for this class of potentials. A minimum charge is then computed and its dependence on spatial dimensionality is shown to scale as Qmin∼exp(d). We also briefly …


Dynamical Control Of Qubit Coherence: Random Versus Deterministic Schemes, Lea F. Santos, Lorenza Viola Dec 2005

Dynamical Control Of Qubit Coherence: Random Versus Deterministic Schemes, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

We reexamine the problem of switching off unwanted phase evolution and decoherence in a single two-state quantum system in the light of recent results on random dynamical decoupling methods [L. Viola and E. Knill, Phys. Rev. Lett. 94, 060502 (2005)]. A systematic comparison with standard cyclic decoupling is effected for a variety of dynamical regimes, including the case of both semiclassical and fully quantum decoherence models. In particular, exact analytical expressions are derived for randomized control of decoherence from a bosonic environment. We investigate quantitatively control protocols based on purely deterministic, purely random, as well as hybrid design, and …