Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physical Chemistry

Synchrotron radiation

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

K-Shell X-Ray Spectroscopy Of Atomic Nitrogen, M. M. Sant'anna, Gunnar Ohrwall, Wayne C. Stolte, Alfred S. Schlachter, Dennis W. Lindle, B. M. Mclaughlin Mar 2012

K-Shell X-Ray Spectroscopy Of Atomic Nitrogen, M. M. Sant'anna, Gunnar Ohrwall, Wayne C. Stolte, Alfred S. Schlachter, Dennis W. Lindle, B. M. Mclaughlin

Chemistry and Biochemistry Faculty Research

Absolute K-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Because of the difficulty of creating a target of neutral atomic nitrogen, no high-resolution K-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s → np resonance features throughout the threshold region. An experimental value of 409.64 ± 0.02 eV was determined for the K-shell binding energy.


Design And Performance Of The Advanced-Light-Source Double-Crystal Monochromator, G. Jones, S. Ryce, Dennis W. Lindle, B. A. Karlin, J. C. Woicik, Rupert C. Perera Feb 1995

Design And Performance Of The Advanced-Light-Source Double-Crystal Monochromator, G. Jones, S. Ryce, Dennis W. Lindle, B. A. Karlin, J. C. Woicik, Rupert C. Perera

Chemistry and Biochemistry Faculty Research

A new “Cowan type” double-crystal monochromator, based on the boomerang design used at National Synchrotron Light Source (NSLS) beamline X-24A, has been developed for beamline 9.3.1 at the Advanced Light Source (ALS), a windowless ultrahigh vacuum beamline covering the 1-6 keV photon-energy range. Beamline 9.3.1 is designed to simultaneously achieve the goals of high energy resolution, high flux, and high brightness at the sample. The mechanical design of the monochromator has been simplified, and recent developments in technology have been included. Measured mechanical precision of the monochromator shows significant improvement over existing designs. In tests with x-rays at NSLS beamline …


Measurement Of The Ratio Of Double-To-Single Photoionization Of Helium At 2.8 Kev Using Synchrotron Radiation, Jon C. Levin, Dennis W. Lindle, N. Keller, R. D. Miller, Y. Azuma, N. Berrah Mansour, H. G. Berry, Ivan A. Sellin Aug 1991

Measurement Of The Ratio Of Double-To-Single Photoionization Of Helium At 2.8 Kev Using Synchrotron Radiation, Jon C. Levin, Dennis W. Lindle, N. Keller, R. D. Miller, Y. Azuma, N. Berrah Mansour, H. G. Berry, Ivan A. Sellin

Chemistry and Biochemistry Faculty Research

We report the first measurement of the ratio of double-to-single photoionization of helium well above the double-ionization threshold. Using a time-of-flight technique, we find He++/He+=1.6±0.3% at hν=2.8 keV. This value lies between calculations by Amusia (2.3%) and by Samson, who predicts 1.2% by analogy with electron-impact ionization cross sections of singly charged ions. Good agreement is obtained with older shake calculations of Byron and Joachain, and of Åberg, who predict 1.7%.


Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle Aug 1990

Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction.