Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong Aug 2017

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong

Biology Faculty Publications

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination …


Challenging Disciplinary Boundaries In The First Year: A New Introductory Integrated Science Course For Stem Majors, Lisa Gentile, Lester Caudill, Mirela Fetea, April L. Hill, Kathy Hoke, Barry Lawson, Ovidiu Z. Lipan, Michael Kerckhove, Carol A. Parish, Krista J. Stenger, Doug Szajda May 2012

Challenging Disciplinary Boundaries In The First Year: A New Introductory Integrated Science Course For Stem Majors, Lisa Gentile, Lester Caudill, Mirela Fetea, April L. Hill, Kathy Hoke, Barry Lawson, Ovidiu Z. Lipan, Michael Kerckhove, Carol A. Parish, Krista J. Stenger, Doug Szajda

Biology Faculty Publications

To help undergraduates make connections among disciplines so they are able to approach, evaluate, and contribute to the solutions of important global problems, our campus has been focused on interdisciplinary research and education opportunities across the science, technology, engineering, and mathematics (STEM) disciplines. This paper describes the mobilization, planning, and implementation of a first-year interdisciplinary course for STEM majors that integrates key concepts found in traditional first-semester biology, chemistry, computer science, mathematics, and physics courses. This team-taught course, Integrated Quantitative Science (IQS), is half of a first-year student’s schedule in both semesters and is composed of a double lecture and …


Impact Of Interdisciplinary Undergraduate Research In Mathematics And Biology On The Development Of A New Course Integrating Five Stem Disciplines, Lester Caudill, April L. Hill, Kathy Hoke, Ovidiu Z. Lipan Oct 2010

Impact Of Interdisciplinary Undergraduate Research In Mathematics And Biology On The Development Of A New Course Integrating Five Stem Disciplines, Lester Caudill, April L. Hill, Kathy Hoke, Ovidiu Z. Lipan

Biology Faculty Publications

Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a …


Confocal Microscopy: A Powerful Tool For Biological Research, Amit Singh, K. P. Gopinathan May 1998

Confocal Microscopy: A Powerful Tool For Biological Research, Amit Singh, K. P. Gopinathan

Biology Faculty Publications

Conventional light microscopy allows the observation of living as well as fixed cells and tissues to generate two-dimensional images. The out-of-focus information often obscures the ultrastructural details, especially in thick specimens with overlapping structures. The earliest available light microscopy visualized the objects in hydrated state in two-dimensions during their temporal development. The emergence of electron microscopy (EM) provided superb resolution of ultrastructural details, but it was applicable only for objects in the dehydrated state and thereby potentially introducing handling artifacts. The usefulness of optical methods, however, has been limited by the poor depth discrimination. Often, the fluorescence and reflectance images …