Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Drainage, Rebound And Oscillation Of A Meniscus In A Tube, Jeremy Marston, Garrett Toyofuku, Chao Li, Tadd T. Truscott, Jamal Uddin Aug 2018

Drainage, Rebound And Oscillation Of A Meniscus In A Tube, Jeremy Marston, Garrett Toyofuku, Chao Li, Tadd T. Truscott, Jamal Uddin

Mechanical and Aerospace Engineering Faculty Publications

In this paper, the drainage and subsequent rebound of a liquid column in a cylindrical tube is examined experimentally and theoretically. When liquid is drawn up into a capillary and then released under gravity, inertia allows the meniscus to overshoot the equilibrium capillary rise height. The meniscus then rebounds up the tube, again overshooting the equilibrium height and undergoes oscillation. By varying both the immersion depth and radius of the tube, one can observe rich dynamical behavior, with the most dramatic being the formation of a fast liquid jet, barely visible to the naked eye but easily captured with high-speed …


Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash Jan 2009

Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a reacting fluid with multiple dissipative processes. The procedure, as in the case of a single dissipative process, yields two dissipative terms in the Navier-Stokes equation: The first is the traditional volume viscosity term, proportional to the dilatational component of the velocity; the second term is proportional to the material time derivative of the pressure gradient. Each dissipative process is assumed to be independent of the others. In a fluid comprising a single constituent with multiple relaxation processes, the relaxation times of the multiple processes are …


Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash Jan 2006

Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

We respond to the Comment of Markus Scholle and therewith revise our material entropy constraint to account for the production of entropy. (c) 2006 American Institute of Physics.