Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Electromagnetics and Photonics

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 255

Full-Text Articles in Physics

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State ...


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos Mar 2020

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an ...


Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao, Mark Gragston, A Patnaik, Paul Hsu, Michael B. Shattan Nov 2019

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao, Mark Gragston, A Patnaik, Paul Hsu, Michael B. Shattan

Faculty Publications

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics ...


Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla Aug 2019

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla

Faculty Publications

We investigate how the near field affects partially coherent light scattered from an aperture in an opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they affect spatial coherence is well documented. Here, we consider other near-field effects that might impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons. We derive the near-field statistics (in particular, cross-spectral density functions) by applying electromagnetic equivalence theorems and the Method of Moments ...


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael J. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael J. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap ...


Intelligent Metasurfaces With Continuously Tunable Local Surface Impedance For Multiple Reconfigurable Functions, Fu Liu, Odysseas Tsilipakos, Alexandros Pitilakis, Anna C. Tasolamprou, Mohammad Sajjad Mirmoosa, Nikolaos V. Kantartzis, Do-Hoon Kwon, Maria Kafesaki, Costas M. Soukoulis, Sergei A. Tretyakov Apr 2019

Intelligent Metasurfaces With Continuously Tunable Local Surface Impedance For Multiple Reconfigurable Functions, Fu Liu, Odysseas Tsilipakos, Alexandros Pitilakis, Anna C. Tasolamprou, Mohammad Sajjad Mirmoosa, Nikolaos V. Kantartzis, Do-Hoon Kwon, Maria Kafesaki, Costas M. Soukoulis, Sergei A. Tretyakov

Ames Laboratory Accepted Manuscripts

Electromagnetic metasurfaces can be characterized as intelligent if they are able to perform multiple tunable functions, with the desired response being controlled by a computer influencing the individual electromagnetic properties of each metasurface inclusion. In this paper, we present an example of an intelligent metasurface that operates in the reflection mode in the microwave frequency range. We numerically show that, without changing the main body of the metasurface, we can achieve tunable perfect absorption and tunable anomalous reflection. The tunability features can be implemented using mixed-signal integrated circuits (ICs), which can independently vary both the resistance and reactance, offering complete ...


A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak Feb 2019

A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak

Faculty Publications

The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil ...


M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer Jan 2019

M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer

Faculty Publications

Extending existing scalar Schell-model source work, we derive the M2 factor for a general electromagnetic or vector Schell-model source to assess beam quality. In particular, we compute the M2 factors for two vector Schell-model sources found in the literature. We then describe how to synthesize vector Schell-model beams in terms of specified, desired M2 and present Monte Carlo simulation results to validate our analysis.


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler Jan 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler

Faculty Publications

The elemental composition of heavy ions (with atomic number Z > 2) (hi-Z) in large gradual E > 10 MeV nuc-1 SEP events has been extensively studied in the 2-15 MeV nuc-1 range to determine the acceleration processes and transport properties of SEPs. These studies invariably are based on abundances relative to those of a single element such as C or O and often neglect H and He, the elements of primary interest for space weather. The total radiation of an SEP event is determined not only by the H and He properties but also by those of hi-Z ions ...


Effects Of Fabrication Errors On The Focusing Performance Of A Sector Metalens, S. S. Stafeev, A. G. Nalimov, Liam O’Faolain, M. V. Kotlyar Nov 2018

Effects Of Fabrication Errors On The Focusing Performance Of A Sector Metalens, S. S. Stafeev, A. G. Nalimov, Liam O’Faolain, M. V. Kotlyar

Cappa Publications

Using e-beam lithography, a 16-sector spiral metalens was fabricated in an amorphous silicon, capable of converting linearly polarized incident light into an azimuthally polarized optical vortex. When illuminated by a 633-nm linearly polarized laser beam, the metalens generated a near-surface subwavelength focal spot equal to 0.75 of the incident wavelength at full-width of half-maximum intensity. The focusing performance of the spiral metalens was numerically shown to be sensitive to the deviation of the factual microrelief from the calculated height. For the designed microrelief height, a circularly polarized incident beam was focused into a bright ring with a reverse energy ...


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy ...


Tailoring Bandgap Of Perovskite Batio3 By Transition Metals Co-Doping For Visible-Light Photoelectrical Applications: A First-Principles Study, Fan Yang, Liang Yang, Changzhi Ai, Pengcheng Xie, Shiwei Lin, Cai-Zhuang Wang, Xihong Lu Jun 2018

Tailoring Bandgap Of Perovskite Batio3 By Transition Metals Co-Doping For Visible-Light Photoelectrical Applications: A First-Principles Study, Fan Yang, Liang Yang, Changzhi Ai, Pengcheng Xie, Shiwei Lin, Cai-Zhuang Wang, Xihong Lu

Ames Laboratory Accepted Manuscripts

The physical and chemical properties of V-M″ and Nb-M″ (M″ is 3d or 4d transition metal) co-doped BaTiO3were studied by first-principles calculation based on density functional theory. Our calculation results show that V-M″ co-doping is more favorable than Nb-M″ co-doping in terms of narrowing the bandgap and increasing the visible-light absorption. In pure BaTiO3, the bandgap depends on the energy levels of the Ti 3d and O 2p states. The appropriate co-doping can effectively manipulate the bandgap by introducing new energy levels interacting with those of the pure BaTiO3. The optimal co-doping effect comes from the ...


Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar Jun 2018

Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar

Cappa Publications

Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 ...


Demonstration Of Versatile Whispering-Gallery Micro-Lasers For Remote Refractive Index Sensing, Lei Wan, Hengky Chandrahalim, Jian Zhou Mar 2018

Demonstration Of Versatile Whispering-Gallery Micro-Lasers For Remote Refractive Index Sensing, Lei Wan, Hengky Chandrahalim, Jian Zhou

Faculty Publications

We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 x 10−4 RIU. The maximum bulk refractive index sensitivity ...


Measuring 3d Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang, Tianben Ding, Jin Lu, Hesam Mazidi, Matthew D. Lew Feb 2018

Measuring 3d Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang, Tianben Ding, Jin Lu, Hesam Mazidi, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a method to measure the molecular orientation and rotational mobility of single-molecule emitters by designing and implementing a Tri-spot point spread function. It can measure all degrees of freedom related to molecular orientation and rotational mobility. Its design is optimized by maximizing the theoretical limit of its measurement precision. We evaluate the precision and accuracy of the Tri-spot PSF by measuring the orientation and effective rotational mobility of single fluorescent molecules embedded in a polymer matrix.


Effects Of Edge Inclination Angles On Whispering-Gallery Modes In Printable Wedge Microdisk Lasers, Cong Chen, Lei Wan, Hengky Chandrahalim Jan 2018

Effects Of Edge Inclination Angles On Whispering-Gallery Modes In Printable Wedge Microdisk Lasers, Cong Chen, Lei Wan, Hengky Chandrahalim

Faculty Publications

The ink-jet technique was developed to print the wedge polymer microdisk lasers. The characterization of these lasers was implemented using a free-space optics measurement setup. It was found that disks of larger edge inclination angles have a larger free spectral range (FSR) and a lower resonance wavelength difference between the fundamental transverse electric (TE) and transverse magnetic (TM) whispering-gallery modes (WGMs). This behavior was also confirmed with simulations based on the modified Oxborrow’s model with perfectly matched layers (PMLs), which was adopted to accurately calculate the eigenfrequencies, electric field distributions, and quality parameters of modes in the axisymmetric microdisk ...


Antimatched Electromagnetic Metasurfaces For Broadband Arbitrary Phase Manipulation In Reflection, Odysseas Tsilipakos, Thomas Koschny, Costas M. Soukoulis Jan 2018

Antimatched Electromagnetic Metasurfaces For Broadband Arbitrary Phase Manipulation In Reflection, Odysseas Tsilipakos, Thomas Koschny, Costas M. Soukoulis

Ames Laboratory Accepted Manuscripts

Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0–2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase ...


Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov Dec 2017

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

In target-in-the-loop laser beam projection scenarios typical of remote sensing, directed energy, and adaptive optics applications, a transmitted laser beam propagates through an optically inhomogeneous medium toward a target, scatters off the target’s rough surface, and returns back to the transceiver plane. Coherent beam scattering off the randomly rough surface results in strong speckle modulation in the transceiver plane. This speckle modulation has been a long-standing challenge that limits performance of remote sensing, active imaging, and adaptive optics techniques. Using physics-based models of laser beam scattering off a randomly rough surface, we show that received speckle-field spatial and temporal ...


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Dec 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video ...


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with ...


Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov Nov 2017

Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

A laser beam propagation model that accounts for the joint effect of atmospheric turbulence and refractivity is introduced and evaluated through numerical simulations. In the numerical analysis of laser beam propagation, refractive index inhomogeneities along the atmospheric propagation path were represented by a combination of the turbulence-induced random fluctuations described in the framework of classical Kolmogorov turbulence theory and large-scale refractive index variations caused by the presence of an inverse temperature layer. The results demonstrate that an inverse temperature layer located in the vicinity of a laser beam’s propagation path may strongly impact the laser beam statistical characteristics including ...


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides ...


Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr Sep 2017

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr

Faculty Publications

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping ...


Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute Jun 2017

Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute

Electro-Optics and Photonics Faculty Publications

University of Dayton’s Center of Excellence for Thin Film Research and Surface Engineering (CETRASE) is delighted to organize its second international workshop at the University of Dayton’s Research Institute (UDRI) campus in Dayton, Ohio, USA. The purpose of the new workshop is to exchange technical knowledge and boost technical and educational collaboration activities within the thin film research community through our CETRASE and the UDRI.


Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks May 2017

Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks

Faculty Publications

Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix) allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined ...


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore May 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Electrical and Computer Engineering Faculty Publications

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Feb 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Electrical and Computer Engineering Faculty Publications

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation ...


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Feb 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Electrical and Computer Engineering Faculty Publications

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames ...