Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Condensed Matter Physics

Photopolymers

Articles 1 - 8 of 8

Full-Text Articles in Physics

Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal Jan 2010

Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal

Articles

Novel nanocomposites consisting of a water soluble acrylamide–based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by 13C NMR and Visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5% wt.) behave as a non-inert additive, resulting in an effective increase in layer thickness that causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed …


Two-Way Diffusion Model For Short Exposure Holographic Grating Formation In Acrylamide-Based Photopolymer, Tzvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, Vincent Toal Jan 2010

Two-Way Diffusion Model For Short Exposure Holographic Grating Formation In Acrylamide-Based Photopolymer, Tzvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, Vincent Toal

Articles

A theoretical model for formation of a short exposure holographic grating is presented. The model accounts for both monomer and polymer diffusion and distinguishes between short polymer chains capable of diffusing and long polymer chains that are immobile. It is shown that the experimentally observed decrease of diffraction efficiency at higher spatial frequency can be predicted by assuming diffusion of short-chain polymers away from the bright fringes. The time evolution of the refractive index modulation after short exposure is calculated and compared with experimental results. The effects of diffusion coefficients, polymerization rates, intensity and spatial frequency of recording on the …


Optimisation Of An Acrylamide-Based Photopolymer System For Holographic Inscription Of Surface Patterns With Sub-Micron Resolution, Kevin Trainer, Kevin Wearen, Dimana Nazarova, Izabela Naydenova, Vincent Toal Jan 2010

Optimisation Of An Acrylamide-Based Photopolymer System For Holographic Inscription Of Surface Patterns With Sub-Micron Resolution, Kevin Trainer, Kevin Wearen, Dimana Nazarova, Izabela Naydenova, Vincent Toal

Articles

We describe the optimisation of the holographic patterning of sub-micrometer surface relief structures in an acrylamide-based photopolymer. A substantial improvement in the photoinduced surface relief resolution was achieved by altering the photopolymer chemical composition and by introducing a single step post recording thermal treatment of the layers. It was observed that, by optimisation of the chemical composition of the photopolymer layers, the maximum achievable spatial frequency increases from 200 l/mm to 550 l/mm. The improvement of the surface relief amplitude by alteration of the chemical composition is limited due to the fact that both decrease of the plasticiser and increase …


A Diffusion Model For Spatially Dependent Photopolymerization, Dana Mackey, Tzvetanka Babeva, Izabela Naydenova, Vincent Toal Jan 2010

A Diffusion Model For Spatially Dependent Photopolymerization, Dana Mackey, Tzvetanka Babeva, Izabela Naydenova, Vincent Toal

Articles

Photopolymers represent an attractive class of optical recording materials due to properties such as high refractive index modulation, dry film processing, long shelf life, etc. Applications include holographically based devices for optical storage disks, optical interconnections, optical memories and filters. This paper will address the dynamics of short-exposure holographic grating formation; a new mathematical model is proposed with the aim of understanding the experimental observations of low diffraction efficiency in high spatial frequency gratings.


Optical Properties Of Photopolymerisable Nanocomposites Containing Zeolite Nanoparticles, Izabela Naydenova, Tzvetanka Babeva, Elsa Leite, Nitesh Pandey, Temenujka Yovcheva, Svetlana Mintova, Vincent Toal Jan 2009

Optical Properties Of Photopolymerisable Nanocomposites Containing Zeolite Nanoparticles, Izabela Naydenova, Tzvetanka Babeva, Elsa Leite, Nitesh Pandey, Temenujka Yovcheva, Svetlana Mintova, Vincent Toal

Conference Papers

Acrylamide-based photopolymerisable nanocomposites containing three different types of nanozeolites – Si-MFI, AlPO and BEA, were studied. The influence of the porous nanoparticles on the average refractive index, optical scattering, holographic recording properties and shrinkage were characterised.


Recent And Emerging Applications Of Holographic Photopolymers And Nanocomposites, Izabela Naydenova, Pavani Kotakonda, Raghavendra Jallapuram, Tsvetanka Babeva, Denis Bade, Suzanne Martin, Vincent Toal, Svetlana Mintova Jan 2009

Recent And Emerging Applications Of Holographic Photopolymers And Nanocomposites, Izabela Naydenova, Pavani Kotakonda, Raghavendra Jallapuram, Tsvetanka Babeva, Denis Bade, Suzanne Martin, Vincent Toal, Svetlana Mintova

Conference Papers

Sensing applications of holograms may be based on effects such as change in the spacing of the recorded fringes in a holographic diffraction grating in the presence of an analyte so that the direction of the diffracted laser light changes, or, in the case of a white light reflection grating, the wavelength of the diffracted light changes. An example is a reflection grating which swells in the presence of atmospheric moisture to indicate relative humidity by a change is the colour of the diffracted light. These devices make use of the photopolymer’s ability to absorb moisture. In a more versatile …


Holographic Recording In Nanoparticle-Doped Photopolymer, Izabela Naydenova, Hosam Sherif, Svetlana Mintova, Suzanne Martin, Vincent Toal Jan 2006

Holographic Recording In Nanoparticle-Doped Photopolymer, Izabela Naydenova, Hosam Sherif, Svetlana Mintova, Suzanne Martin, Vincent Toal

Conference Papers

A nanoparticle-doped acrylic photopolymer is characterised as a material for holographic recording. The influence of nanoparticles on the photopolymer dynamic range, dynamics of recording, temporal stability and mechanical stability in terms of shrinkage has been studied. The dynamics of recording and the temporal stability are investigated by real time monitoring of the build up of diffraction gratings of spatial frequencies of 200 to 2000 l/mm. The shrinkage has been characterised by recording slanted transmission gratings and observation of the change in the Bragg angle.


Investigation Of The Diffusion Processes In Self-Processing Acrylamide-Based Photopolymer System, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Suzanne Martin, Vincent Toal May 2004

Investigation Of The Diffusion Processes In Self-Processing Acrylamide-Based Photopolymer System, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Suzanne Martin, Vincent Toal

Articles

Results from the investigation of the diffusion processes in a dry acrylamide-based photopolymer system are presented. The investigation is carried out in the context of experimental work on optimization of the high spatial frequency response of the photopolymer. Tracing the transmission holographic grating dynamics at short times of exposure is utilized to measure diffusion coefficients. The results reveal that two different diffusion processes contribute with opposite sign to the refractive index modulation responsible for the diffraction grating build up. Monomer diffusion from dark to bright fringe areas increases the refractive index modulation. It is characterized with diffusion constant D0=1.6E-7 cm2/s. …