Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak Sep 2022

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak

Faculty Publications

Resonant plasmonic–molecular chiral interactions are a promising route to enhanced biosensing. However, biomolecular optical activity primarily exists in the far-ultraviolet regime, posing significant challenges for spectral overlap with current nano-optical platforms. We demonstrate experimentally and computationally the enhanced chiral sensing of a resonant plasmonic–biomolecular system operating in the far-UV. We develop a full-wave model of biomolecular films on Al gammadion arrays using experimentally derived chirality parameters. Our calculations show that detectable enhancements in the chiroptical signals from small amounts of biomolecules are possible only when tight spectral overlap exists between the plasmonic and biomolecular chiral responses. We support this conclusion …


Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin Jan 2020

Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin

Faculty Publications

We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the critical …


Unconventional Pairing Symmetry Of Interacting Dirac Fermions On A Π -Flux Lattice, Huaiming Guo, Ehsan Khatami, Yao Wang, Thomas Devereaux, Rajiv Singh, Richard Scalettar Apr 2018

Unconventional Pairing Symmetry Of Interacting Dirac Fermions On A Π -Flux Lattice, Huaiming Guo, Ehsan Khatami, Yao Wang, Thomas Devereaux, Rajiv Singh, Richard Scalettar

Faculty Publications

The pairing symmetry of interacting Dirac fermions on the π-flux lattice is studied with the determinant quantum Monte Carlo and numerical linked-cluster expansion methods. The s∗- (i.e., extended s-) and d-wave pairing symmetries, which are distinct in the conventional square lattice, are degenerate under the Landau gauge. We demonstrate that the dominant pairing channel at strong interactions is an unconventional ds∗-wave phase consisting of alternating stripes of s∗- and d-wave phases. A complementary mean-field analysis shows that while the s∗- and d-wave symmetries individually have nodes in the energy spectrum, the ds∗ channel is fully gapped. The results represent a …


Semiconductor Color-Center Structure And Excitation Spectra: Equation-Of-Motion Coupled-Cluster Description Of Vacancy And Transition-Metal Defect Photoluminescence, Jesse J. Lutz, Xiaofeng F. Duan, Larry W. Burggraf Jan 2018

Semiconductor Color-Center Structure And Excitation Spectra: Equation-Of-Motion Coupled-Cluster Description Of Vacancy And Transition-Metal Defect Photoluminescence, Jesse J. Lutz, Xiaofeng F. Duan, Larry W. Burggraf

Faculty Publications

Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the …


Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami Jan 2018

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami

Faculty Publications

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and …


Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami Aug 2017

Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami

Faculty Publications

Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural network machine learning techniques to distinguish finite-temperature phases of the strongly-correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. …


Characteristic Length Scales Of The Secondary Relaxations In Glass-Forming Glycerol, Sudipta Gupta, Eugene Mamontov, Niina Jalarvo, Laura Stingaciu, Michael Ohl Mar 2016

Characteristic Length Scales Of The Secondary Relaxations In Glass-Forming Glycerol, Sudipta Gupta, Eugene Mamontov, Niina Jalarvo, Laura Stingaciu, Michael Ohl

Faculty Publications

We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends …


Force-Enhanced Atomic Refinement: Structural Modeling With Interatomic Forces In A Reverse Monte Carlo Approach Applied To Amorphous Si And Sio2, A. Pandey, Parthapratim Biswas, D. A. Drabold Oct 2015

Force-Enhanced Atomic Refinement: Structural Modeling With Interatomic Forces In A Reverse Monte Carlo Approach Applied To Amorphous Si And Sio2, A. Pandey, Parthapratim Biswas, D. A. Drabold

Faculty Publications

We introduce a structural modeling technique, called force-enhanced atomic refinement (FEAR). The technique incorporates interatomic forces in reverse Monte Carlo (RMC) simulations for structural refinement by fitting experimental diffraction data using the conventional RMC algorithm, and minimizes the total energy and forces from an interatomic potential. We illustrate the usefulness of the approach by studying a−SiO2 and a−Si. The structural and electronic properties of the FEAR models agree well with experimental neutron and x-ray diffraction data and the results obtained from previous molecular dynamics simulations of a−SiO2 and a−Si. We have shown that the method is more efficient …


Oxygen Vacancies In Lialo2 Crystals, Maurio S. Holston, I. P. Ferguson, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton Oct 2015

Oxygen Vacancies In Lialo2 Crystals, Maurio S. Holston, I. P. Ferguson, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Singly ionized oxygen vacancies are produced in LiAlO2 crystals by direct displacement events during a neutron irradiation. These vacancies, with one trapped electron, are referred to as V+O centers. They are identified and characterized using electron paramagnetic resonance (EPR) and optical absorption. The EPR spectrum from the V+O centers is best monitored near 100 K with low microwave power. When the magnetic field is along the [001] direction, this spectrum has a g value of 2.0030 and well-resolved hyperfine interactions of 310 and 240 MHz with the two 27Al nuclei that are adjacent to the oxygen vacancy. A second …


Observation Of Antiferromagnetic Correlations In The Hubbard Model With Ultracold Atoms, Russell Hart, Pedro Duarte, Tsung-Lin Yang, Xinxing Liu, Thereza Paiva, Ehsan Khatami, Richard Scalettar, Nandini Trivedi, David Huse, Randall Hulet Mar 2015

Observation Of Antiferromagnetic Correlations In The Hubbard Model With Ultracold Atoms, Russell Hart, Pedro Duarte, Tsung-Lin Yang, Xinxing Liu, Thereza Paiva, Ehsan Khatami, Richard Scalettar, Nandini Trivedi, David Huse, Randall Hulet

Faculty Publications

Ultracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-temperature superconductivity. The Hubbard model—a simplified representation of fermions moving on a periodic lattice—is thought to describe the essential details of copper oxide superconductivity. This model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state. Optical lattices filled with a two-spin-component Fermi gas of ultracold atoms can faithfully realize the Hubbard model with readily tunable parameters, and thus provide a platform for …


Impact Of Homogeneous Strain On Uranium Vacancy Diffusion In Uranium Dioxide, Anuj Goyal, Simon R. Phillpot, Gopinath Subramanian, David A. Andersson, Chris R. Stanek, Blas P. Uberuaga Mar 2015

Impact Of Homogeneous Strain On Uranium Vacancy Diffusion In Uranium Dioxide, Anuj Goyal, Simon R. Phillpot, Gopinath Subramanian, David A. Andersson, Chris R. Stanek, Blas P. Uberuaga

Faculty Publications

We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect …


Nonlinear Optimal Filter Technique For Analyzing Energy Depositions In Tes Sensors Driven Into Saturation, Benjamin Shank, Jeffrey Yen, Blas Cabrera, John Mark Kreikebaum, Robert Moffatt, Peter Redl, Betty Young, Paul Brink, Matthew Cherry, Astrid Tomada Nov 2014

Nonlinear Optimal Filter Technique For Analyzing Energy Depositions In Tes Sensors Driven Into Saturation, Benjamin Shank, Jeffrey Yen, Blas Cabrera, John Mark Kreikebaum, Robert Moffatt, Peter Redl, Betty Young, Paul Brink, Matthew Cherry, Astrid Tomada

Faculty Publications

We present a detailed thermal and electrical model of superconducting transition edge sensors(TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improvedmodel, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energyresolution.


Scanning Capacitance Spectroscopy On N+-P Asymmetrical Junctions In Multicrystalline Si Solar Cells, Chun-Sheng Jiang, Jennifer T. Heath, Helio R. Moutinho, Mowafak M. Al-Jassim Jan 2011

Scanning Capacitance Spectroscopy On N+-P Asymmetrical Junctions In Multicrystalline Si Solar Cells, Chun-Sheng Jiang, Jennifer T. Heath, Helio R. Moutinho, Mowafak M. Al-Jassim

Faculty Publications

We report on a scanning capacitance spectroscopy (SCS) study on the n+-p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of ∼10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with ∼10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in …


Analysis Of Electrodeposited Nickel-Iron Alloy Film Composition Using Particle-Induced X-Ray Emission, Alyssa Frey, Nicholas Wozniak, Timothy Nagi, Matthew Keller, J. Mark Lunderberg, Graham F. Peaslee, Paul Deyoung, Jennifer R. Hampton Jan 2011

Analysis Of Electrodeposited Nickel-Iron Alloy Film Composition Using Particle-Induced X-Ray Emission, Alyssa Frey, Nicholas Wozniak, Timothy Nagi, Matthew Keller, J. Mark Lunderberg, Graham F. Peaslee, Paul Deyoung, Jennifer R. Hampton

Faculty Publications

The elemental composition of electrodeposited NiFe thin films was analyzed with particle-induced X-ray emission (PIXE). The thin films were electrodeposited on polycrystalline Au substrates from a 100mM NiSO4, 10 mM FeSO4, 0.5M H3BO3, and 1M Na2SO4 solution. PIXE spectra of these films were analyzed to obtain relative amounts of Ni and Fe as a function of deposition potential and deposition time. The results show that PIXE can measure the total deposited metal in a sample over at least four orders of magnitude with similar fractional uncertainties. The technique is …


Density Functional Theory Study On The Electronic Structure Of N- And P-Type Doped Srtio3 At Anodic Solid Oxide Fuel Cell Conditions, S. Suthirakun, Salai Cheettu Ammal, G. Xiao, Fanglin Chen, Hans-Conrad Zur Loye, Andreas Heyden Jan 2011

Density Functional Theory Study On The Electronic Structure Of N- And P-Type Doped Srtio3 At Anodic Solid Oxide Fuel Cell Conditions, S. Suthirakun, Salai Cheettu Ammal, G. Xiao, Fanglin Chen, Hans-Conrad Zur Loye, Andreas Heyden

Faculty Publications

The electronic conductivity and thermodynamic stability of mixed n-type and p-type doped SrTiO3 have been investigated at anodic solid oxide fuel cell (SOFC) conditions using density functional theory (DFT) calculations. In particular, constrained ab initio thermodynamic calculations have been performed to evaluate the phase stability and reducibility of various Nb- and Ga-doped SrTiO3 at synthesized and anodic SOFC conditions. The density of states (DOS) of these materials was analyzed to study the effects of n- and p-doping on the electronic conductivity. In agreement with experimental observations, we find that the transformation from 20% Nb-doped Sr-deficient SrTiO3 to a non-Sr-deficient phase …


Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey Jan 2008

Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey

Faculty Publications

This paper provides a quantitative comparison and explores the design space of lead zirconium titanate (PZT)–only and PZT-on-silicon length-extensional mode resonators for incorporation into radio frequency microelectromechanical system filters and oscillators. We experimentally measured the correlation of motional impedance (RX) and quality factor (Q) with the resonators’ silicon layer thickness (tSi). For identical lateral dimensions and PZT-layer thicknesses (tPZT), the PZT-on-silicon resonator has higher resonant frequency (fC), higher Q (5100 versus 140), lower RX (51 Ω versus 205 Ω), and better linearity [third-order input intercept …