Open Access. Powered by Scholars. Published by Universities.^{®}

Articles **1** - **5** of ** 5**

## Full-Text Articles in Physics

Growth And Transport Properties Of Complementary Germanium Nanowire Field Effect Transistors, Andrew B. Greytak, Lincoln J. Lauhon, Mark S. Gudiksen, Charles M. Lieber

#### Growth And Transport Properties Of Complementary Germanium Nanowire Field Effect Transistors, Andrew B. Greytak, Lincoln J. Lauhon, Mark S. Gudiksen, Charles M. Lieber

*Faculty Publications*

*n*- and *p*-type Ge nanowires were synthesized by a multistep process in which axial elongation, via vapor–liquid–solid (VLS) growth, and doping were accomplished in separate chemical vapor deposition steps. Intrinsic, single-crystal, Ge nanowires prepared by Au nanocluster-mediated VLS growth were surface-doped *in situ* using diborane or phosphine, and then radial growth of an epitaxial Ge shell was used to cap the dopant layer. Field-effect transistors prepared from these Ge nanowires exhibited on currents and transconductances up to 850 µA/µm and 4.9 µA/V, respectively, with device yields of >85%.

Energy Conserving Approximations To The Quantum Potential: Dynamics With Linearized Quantum Force, Sophya V. Garashchuk, V. A. Rassolov

#### Energy Conserving Approximations To The Quantum Potential: Dynamics With Linearized Quantum Force, Sophya V. Garashchuk, V. A. Rassolov

*Faculty Publications*

Solution of the Schrödinger equation within the de Broglie–Bohm formulation is based on propagation of trajectories in the presence of a nonlocal quantum potential. We present a new strategy for defining approximate quantum potentials within a restricted trial function by performing the optimal fit to the log-derivatives of the wave function density. This procedure results in the energy-conserving dynamics for a closed system. For one particular form of the trial function leading to the linear quantum force, the optimization problem is solved analytically in terms of the first and second moments of the weighted trajectory distribution. This approach gives ...

Modified Quantum Trajectory Dynamics Using A Mixed Wave Function Representation, Sophya V. Garashchuk, V. A. Rassolov

#### Modified Quantum Trajectory Dynamics Using A Mixed Wave Function Representation, Sophya V. Garashchuk, V. A. Rassolov

*Faculty Publications*

Dynamics of quantum trajectories provides an efficient framework for description of various quantum effects in large systems, but it is unstable near the wave function density nodes where the quantum potential becomes singular. A mixed coordinate space/polar representation of the wave function is used to circumvent this problem. The resulting modified trajectory dynamics associated with the polar representation is nonsingular and smooth. The interference structure and the nodes of the wave function density are described, in principle, exactly in the coordinate representation. The approximate version of this approach is consistent with the semiclassical linearized quantum force method [S. Garashchuk ...

Bohmian Dynamics On Subspaces Using Linearized Quantum Force, V. A. Rassolov, Sophya V. Garashchuk

#### Bohmian Dynamics On Subspaces Using Linearized Quantum Force, V. A. Rassolov, Sophya V. Garashchuk

*Faculty Publications*

In the de Broglie–Bohm formulation of quantum mechanics the time-dependent Schrödinger equation is solved in terms of quantum trajectories evolving under the influence of quantum and classical potentials. For a practical implementation that scales favorably with system size and is accurate for semiclassical systems, we use approximate quantum potentials. Recently, we have shown that optimization of the nonclassical component of the momentum operator in terms of fitting functions leads to the energy-conserving approximate quantum potential. In particular, linear fitting functions give the exact time evolution of a Gaussian wave packet in a locally quadratic potential and can describe the ...

Geminal Model Chemistry Ii. Perturbative Corrections, V. A. Rassolov, F. Xu, Sophya V. Garashchuk

#### Geminal Model Chemistry Ii. Perturbative Corrections, V. A. Rassolov, F. Xu, Sophya V. Garashchuk

*Faculty Publications*

We introduce and investigate a chemical model based on perturbative corrections to the product of singlet-type strongly orthogonal geminals wave function. Two specific points are addressed (i) Overall chemical accuracy of such a model with perturbative corrections at a leading order; (ii) Quality of strong orthogonality approximation of geminals in diverse chemical systems. We use the Epstein–Nesbet form of perturbation theory and show that its known shortcomings disappear when it is used with the reference Hamiltonian based on strongly orthogonal geminals. Application of this model to various chemical systems reveals that strongly orthogonal geminals are well suited for chemical ...