Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

State-To-State Rotational Rate Constants For Co+He: Infrared Double Resonance Measurements And Simulation Of The Data Using The Sapt Theoretical Potential Energy Surface, Tony C. Smith, David A. Hostutler, Gordon D. Hager, Michael C. Heaven, George C. Mcbane Nov 2003

State-To-State Rotational Rate Constants For Co+He: Infrared Double Resonance Measurements And Simulation Of The Data Using The Sapt Theoretical Potential Energy Surface, Tony C. Smith, David A. Hostutler, Gordon D. Hager, Michael C. Heaven, George C. Mcbane

Peer Reviewed Articles

An extensive data set of 54 time-resolved pump-probe measurements was used to examine CO+He rotational energy transfer within the CO v=2 rotational manifold. Rotational levels in the range Ji=2-9 were excited and collisional energy transfer of population to the levels Jf=1-10 was monitored. The resulting data set was analyzed by fitting to numerical solutions of the master equation. State-to-state rate constant matrices were generated using fitting law functions and ab initio theoretical calculations that employed the SAPT potential energy surface of Heijmen et al. [J. Chem. Phys. 107, 9921 (1997)]. Fitting laws based on ...


Photofragmentation Dynamics Of Core-Excited Water By Anion-Yield Spectroscopy, Wayne C. Stolte, M. M. Sant'anna, Gunnar Ohrwall, Maria Novella Piancastelli, I. Dominguez-Lopez, Dennis W. Lindle Aug 2003

Photofragmentation Dynamics Of Core-Excited Water By Anion-Yield Spectroscopy, Wayne C. Stolte, M. M. Sant'anna, Gunnar Ohrwall, Maria Novella Piancastelli, I. Dominguez-Lopez, Dennis W. Lindle

Chemistry and Biochemistry Faculty Publications

Partial-anion and- cation yields from H2O are presented for photon energies near the oxygen K edge. The O- yield exhibits a feature above threshold attributed to doubly excited states, in contrast to the H- and cation yields, which are nearly featureless above threshold. Additionally, the lack of the OH- fragment indicates radiative decay and provides a negligible amount of anion formation.


Infrared-Active Vibron Bands Associated With Substitutional Impurities In Solid Parahydrogen, Robert Hinde Jan 2003

Infrared-Active Vibron Bands Associated With Substitutional Impurities In Solid Parahydrogen, Robert Hinde

Chemistry Publications and Other Works

We present a model for the line shapes of infrared-active Q1(0) vibron bands observed in solid parahydrogen doped with low concentrations of spherical substitutional impurities. The line shapes are highly sensitive to the H2 vibrational dependence of the dopant–H2 interaction. When this vibrational dependence is strong, the dopant can trap the infrared-active vibron in its first solvation shell; in this case, the trapped vibron manifests itself in the absorption spectrum as a narrow feature to the red of the pure solid’s vibron band.


Semiclassical Dynamics With Quantum Trajectories: Formulation And Comparison With The Semiclassical Initial Value Representation Propagator, Sophya V. Garashchuk, V. A. Rassolov Jan 2003

Semiclassical Dynamics With Quantum Trajectories: Formulation And Comparison With The Semiclassical Initial Value Representation Propagator, Sophya V. Garashchuk, V. A. Rassolov

Faculty Publications

We present a time-dependent semiclassical method based on quantum trajectories. Quantum-mechanical effects are described via the quantum potential computed from the wave function density approximated as a linear combination of Gaussian fitting functions. The number of the fitting functions determines the accuracy of the approximate quantum potential (AQP). One Gaussian fit reproduces time-evolution of a Gaussian wave packet in a parabolic potential. The limit of the large number of fitting Gaussians and trajectories gives the full quantum-mechanical result. The method is systematically improvable from classical to fully quantum. The fitting procedure is implemented as a gradient minimization. We also compare ...


Decoupling Of The Magnetic And Structural Transformations In Er5si4, Vitalij K. Pecharsky, Alexandra O. Pecharsky, Yurij Mozharivskyj, Karl A. Gschneidner Jr., Gordon J. Miller Jan 2003

Decoupling Of The Magnetic And Structural Transformations In Er5si4, Vitalij K. Pecharsky, Alexandra O. Pecharsky, Yurij Mozharivskyj, Karl A. Gschneidner Jr., Gordon J. Miller

Chemistry Publications

Er5Si4 is a member of the R5(Si4−xGex) family of alloys, where R=rare earth metal. Many of these compounds display a strong coupling between the magnetic and crystal lattices. In the naturally layered R5(Si4−xGex) materials, inter- and intralayer interactions can be controlled by chemical and physical means; thus their physical properties can be tailored within wide limits. The Er5Si4 is unique in that the temperature dependent structural sequence is opposite that of other representatives of this family. The magnetism of Er5Si4 is reflective of its exceptional place within the series.


Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach Jan 2003

Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach

Bioelectrics Publications

We measured the dynamic I–V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 μs the dynamic I–V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar*2 dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line ...


Anisotropy And Large Magnetoresistance In The Narrow-Gap Semiconductor Fesb2, Cedomir Petrovic, J.W. Kim, Sergey L. Bud'ko, A. I. Goldman, Paul C. Canfield, Wonyoung Choe, Gordon J. Miller Jan 2003

Anisotropy And Large Magnetoresistance In The Narrow-Gap Semiconductor Fesb2, Cedomir Petrovic, J.W. Kim, Sergey L. Bud'ko, A. I. Goldman, Paul C. Canfield, Wonyoung Choe, Gordon J. Miller

Chemistry Publications

A study of the anisotropy in magnetic, transport, and magnetotransport properties of FeSb2 has been made on large single crystals grown from Sb flux. Magnetic susceptibility of FeSb2 shows diamagnetic to paramagnetic crossover around 100 K. Electrical transport along two axes is semiconducting, whereas the third axis exhibits a metal-semiconductor crossover at temperature Tcr which is sensitive to current alignment and ranges between 40 and 80 K. In H=70kOe semiconducting transport is restored for T<300K, resulting in large magnetoresistance [ρ(70kOe)−ρ(0)]/ρ(0)=2200% in the crossover temperature range.