Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By Association And Carbon-Carbon Bond Cleavage Of Isoprene, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang May 2018

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By Association And Carbon-Carbon Bond Cleavage Of Isoprene, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2 ...


Lanthanum-Mediated Dehydrogenation Of Butenes: Spectroscopy And Formation Of La(C4H6) Isomers, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang Jan 2018

Lanthanum-Mediated Dehydrogenation Of Butenes: Spectroscopy And Formation Of La(C4H6) Isomers, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-butene, 2-butene, and isobutene are carried out in a laser-vaporization molecular beam source. The three reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butenes. The dehydrogenated species La(C4H6) is the major product, which is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectrum of La(C4H6) produced from the La+1-butene reaction exhibits two band systems, whereas the MATI spectra produced from the La+2-butene and isobutene reactions display only a single band system. Each ...


Detection And Characterization Of The Tin Dihydride (Snh2 And Snd2) Molecule In The Gas Phase, Tony C. Smith, Dennis J. Clouthier Jan 2018

Detection And Characterization Of The Tin Dihydride (Snh2 And Snd2) Molecule In The Gas Phase, Tony C. Smith, Dennis J. Clouthier

Chemistry Faculty Publications

The SnH2 and SnD2 molecules have been detected for the first time in the gas phase by laser-induced fluorescence (LIF) and emission spectroscopic techniques through the Ã1B1–X̃1A1 electronic transition. These reactive species were prepared in a pulsed electric discharge jet using (CH3)4Sn or SnH4/SnD4 precursors diluted in high pressure argon. Transitions to the electronic excited state of the jet-cooled molecules were probed with LIF, and the ground state energy levels were measured from single rovibronic level emission spectra. The LIF spectrum of SnD2 afforded ...


An Experimental And Theoretical Study Of Ã2A"Π–X~2A' Band System Of The Jet-Cooled Hbbr/Dbbr Free Radical, Mohammed Gharaibeh, Dennis J. Clouthier, Riccardo Tarroni Jun 2016

An Experimental And Theoretical Study Of Ã2A"Π–X~2A' Band System Of The Jet-Cooled Hbbr/Dbbr Free Radical, Mohammed Gharaibeh, Dennis J. Clouthier, Riccardo Tarroni

Chemistry Faculty Publications

The electronic spectra of the HBBr and DBBr free radicals have been studied in depth. These species were prepared in a pulsed electric discharge jet using a precursor mixture of BBr3 vapor and H2 or D2 in high pressure argon. Transitions to the electronic excited state of the jet-cooled radicals were probed with laser-induced fluorescence and the ground state energy levels were measured from the single vibronic level emission spectra. HBBr has an extensive band system in the red which involves a linear-bent transition between the two Renner-Teller components of what would be a 2Π state ...


Hyperfine Rather Than Spin Splittings Dominate The Fine Structure Of The B 4Σ-X 4Σ- Bands Of Aic, Dennis J. Clouthier, Aimable Kalume Jan 2016

Hyperfine Rather Than Spin Splittings Dominate The Fine Structure Of The B 4Σ-–X 4Σ- Bands Of Aic, Dennis J. Clouthier, Aimable Kalume

Chemistry Faculty Publications

Laser-induced fluorescence and wavelength resolved emission spectra of the B 4ΣX4Σ band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling ...


An Extended Multireference Study Of The Electronic States Of Para-Benzyne, Carol A. Parish, Evan B. Wang, Hans Lischka Jul 2008

An Extended Multireference Study Of The Electronic States Of Para-Benzyne, Carol A. Parish, Evan B. Wang, Hans Lischka

Chemistry Faculty Publications

A state-averaged, multireference complete active space (CAS) approach was used for the determination of the vertical excitation energies of valence and Rydberg states of para-benzyne. Orbitals were generated with a 10- and 32-state averaged multiconfigurational self-consistent field approach. Electron correlation was included using multireference configuration interaction with singles and doubles, including the Pople correction for size extensivity, multireference averaged quadratic coupled cluster (MR-AQCC) and MR-AQCC based on linear response theory. There is a very high density of electronic states in this diradical system—there are more than 17 states within 7 eV of the ground state including two 3 ...


Three-Body Analytical Potential For Interacting Helium Atoms, Carol A. Parish, Clifford E. Dykstra Nov 1994

Three-Body Analytical Potential For Interacting Helium Atoms, Carol A. Parish, Clifford E. Dykstra

Chemistry Faculty Publications

Large basis set ab initio calculations have been carried out for a dense grid of points on the He, potential energy surface. Three-body contributions were extracted at every point, and a number of concise functional representations for the three-body potential surface were then examined. Three-body multipolar dispersion terms and other radial and angular terms were used in the representations, and an assessment of relative importance of the different terms is presented. Combined with a two-body He-He potential, the results of this work should offer a high quality interaction potential for simulations of aggregated helium.


Pairwise And Many-Body Contributions To Interaction Potentials In He(N) Clusters, Carol A. Parish, Clifford E. Dykstra Jan 1993

Pairwise And Many-Body Contributions To Interaction Potentials In He(N) Clusters, Carol A. Parish, Clifford E. Dykstra

Chemistry Faculty Publications

High level ab initio calculations have been carried out to assess the pairwise additivity of potentials in the attractive or well regions of the potential surfaces of clusters of helium atoms. A large basis set was employed and calculations were done at the Brueckner orbital coupled cluster level. Differences between calculated potentials for several interacting atoms and the corresponding summed pair potentials reveal the three‐body and certain higher order contributions to the interaction strengths. Attraction between rare gas atoms develops from dispersion, and so helium clusters provide the most workable systems for analyzing nonadditivity of dispersion. The results indicate ...