Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Comparison Between The Water Activation Effects By Pulsed And Sinusoidal Helium Plasma Jets, Han Xu, Dingxin Liu, Wenjie Xia, Chen Chen, Weitao Wang, Zhijie Liu, Xiaohua Wang, Michael G. Kong Jan 2018

Comparison Between The Water Activation Effects By Pulsed And Sinusoidal Helium Plasma Jets, Han Xu, Dingxin Liu, Wenjie Xia, Chen Chen, Weitao Wang, Zhijie Liu, Xiaohua Wang, Michael G. Kong

Bioelectrics Publications

Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2, and O2/ONOO induced by the pulsed plasma jet have ...


Electric Field-Driven Water Dipoles: Nanoscale Architecture Of Electroporation, Mayya Tokman, Jane Hyojin Lee, Zachary A. Levine, Ming-Chak Ho, Michael E. Colvin, P. Thomas Vernier Apr 2013

Electric Field-Driven Water Dipoles: Nanoscale Architecture Of Electroporation, Mayya Tokman, Jane Hyojin Lee, Zachary A. Levine, Ming-Chak Ho, Michael E. Colvin, P. Thomas Vernier

Bioelectrics Publications

Electroporation is the formation of permeabilizing structures in the cell membrane under the influence of an externally imposed electric field. The resulting increased permeability of the membrane enables a wide range of biological applications, including the delivery of normally excluded substances into cells. While electroporation is used extensively in biology, biotechnology, and medicine, its molecular mechanism is not well understood. This lack of knowledge limits the ability to control and fine-tune the process. In this article we propose a novel molecular mechanism for the electroporation of a lipid bilayer based on energetics analysis. Using molecular dynamics simulations we demonstrate that ...


Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach Jan 2003

Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach

Bioelectrics Publications

We measured the dynamic I–V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 μs the dynamic I–V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar*2 dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line ...