Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Biological and Chemical Physics

All HMC Faculty Publications and Research

Morphogenesis

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

3d Imaging And Mechanical Modeling Of Helical Buckling In Medicago Truncatula Plant Roots, Jesse L. Silverberg, Roslyn D. Noar, Michael S. Packer, Maria J. Harrison, Christopher L. Henley, Itai Cohen, Sharon J. Gerbode Oct 2012

3d Imaging And Mechanical Modeling Of Helical Buckling In Medicago Truncatula Plant Roots, Jesse L. Silverberg, Roslyn D. Noar, Michael S. Packer, Maria J. Harrison, Christopher L. Henley, Itai Cohen, Sharon J. Gerbode

All HMC Faculty Publications and Research

We study the primary root growth of wild-type Medicago truncatula plants in heterogeneous environments using 3D time-lapse imaging. The growth medium is a transparent hydrogel consisting of a stiff lower layer and a compliant upper layer. We find that the roots deform into a helical shape just above the gel layer interface before penetrating into the lower layer. This geometry is interpreted as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting near the root tip. We study the helical morphology as the modulus of the upper gel layer is varied and demonstrate that …


Evolution Of Spur-Length Diversity In Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy, Joshua R. Puzey, Sharon J. Gerbode, Scott A. Hodges, Elena M. Kramer, L. Mahadevan Nov 2011

Evolution Of Spur-Length Diversity In Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy, Joshua R. Puzey, Sharon J. Gerbode, Scott A. Hodges, Elena M. Kramer, L. Mahadevan

All HMC Faculty Publications and Research

The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone …