Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 45

Full-Text Articles in Physics

Excitable Interplay Between Lasing Quantum Dot States, Michael Dillane, I. Dubinkin, N. Fedorov, T. Erneux, David Goulding, B. Kelleher, E.A. Viktorov Jul 2019

Excitable Interplay Between Lasing Quantum Dot States, Michael Dillane, I. Dubinkin, N. Fedorov, T. Erneux, David Goulding, B. Kelleher, E.A. Viktorov

Cappa Publications

The optically injected semiconductor laser system has proven to be an excellent source of experimental nonlinear dynamics, particularly regarding the generation of excitable pulses. Typically for low-injection strengths, these pulses are the result of a small above-threshold perturbation of a stable steady state, the underlying physics is well described by the Adler phase equation, and each laser intensity pulse is accompanied by a 2π phase rotation. In this article, we show how, with a dual-state quantum dot laser, a variation of type I excitability is possible that cannot be described by the Adler model. The laser is operated so that …


Monolayer Doping Of Silicon-Germanium Alloys: A Balancing Act Between Phosphorus Incorporation And Strain Relaxation, Noel Kennedy, Ray Duffy, Gioele Mirabelli, Luke Eaton, Nikolay Petkov, Justin D. Holmes, Chris Hatem, Lee Walsh, Brenda Long Jul 2019

Monolayer Doping Of Silicon-Germanium Alloys: A Balancing Act Between Phosphorus Incorporation And Strain Relaxation, Noel Kennedy, Ray Duffy, Gioele Mirabelli, Luke Eaton, Nikolay Petkov, Justin D. Holmes, Chris Hatem, Lee Walsh, Brenda Long

Cappa Publications

This paper presents the application of monolayer doping (MLD) to silicon-germanium (SiGe). This study was carried out for phosphorus dopants on wafers of epitaxially grown thin films of strained SiGe on silicon with varying concentrations of Ge (18%, 30%, and 60%). The challenge presented here is achieving dopant incorporation while minimizing strain relaxation. The impact of high temperature annealing on the formation of defects due to strain relaxation of these layers was qualitatively monitored by cross-sectional transmission electron microscopy and atomic force microscopy prior to choosing an anneal temperature for the MLD drive-in. Though the bulk SiGe wafers provided are …


Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani May 2019

Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani

Cappa Publications

Slow light is a very important concept in nanophotonics, especially in the context of photonic crystals. In this work, we apply our previous design of band-edge slow light in silicon waveguide gratings [M. Passoni et al, Opt. Express 26, 8470 (2018)] to Mach-Zehnder modulators based on the plasma dispersion effect. The key idea is to employ an interleaved p-n junction with the same periodicity as the grating, in order to achieve optimal matching between the electromagnetic field profile and the depletion regions of the p-n junction. The resulting modulation efficiency is strongly improved as compared to common modulators based on …


Single Metalens For Generating Polarization And Phase Singularities Leading To A Reverse Flow Of Energy, Victor V. Kotlyar, Anton G. Nalimov, Sergey S. Stafeev, Liam O'Faolain Apr 2019

Single Metalens For Generating Polarization And Phase Singularities Leading To A Reverse Flow Of Energy, Victor V. Kotlyar, Anton G. Nalimov, Sergey S. Stafeev, Liam O'Faolain

Cappa Publications

Using Jones matrices and vectors, we show that a metasurface-based optical element composed of a set of subwavelength diffraction gratings, whose anisotropic transmittance is described by a matrix of polarization rotation by angle m, where is the polar angle, generate an mth order azimuthally or radially polarized beam, when illuminated by linearly polarized light, or an optical vortex with topological charge m, when illuminated by circularly polarized light. Such a converter performs a spin–orbit transformation, acting similarly to a liquid-crystal half-wave plate. Using the FDTD-aided numerical simulation, we show that uniform linearly or circularly polarized light passing through the …


Subwavelength Grating-Based Spiral Metalens For Tight Focusing Of Laser Light, Victor V. Kotlyar, Sergey S. Stafeev, Anton G. Nalimov, Liam O'Faolain Apr 2019

Subwavelength Grating-Based Spiral Metalens For Tight Focusing Of Laser Light, Victor V. Kotlyar, Sergey S. Stafeev, Anton G. Nalimov, Liam O'Faolain

Cappa Publications

In this paper, we investigate a 16-sector spiral metalens fabricated on a thin film (130 nm) of amorphous silicon, consisting of a set of subwavelength binary diffractive gratings and with a numerical aperture that is close to unity. The metalens converts linearly polarized incident light into an azimuthally polarized optical vortex and focuses it at a distance approximately equal to the wavelength of the incident light, k ¼ 633 nm. Using a scanning near-field optical microscope, it is shown experimentally that the metalens forms an elliptical focal spot with diameters smaller than the diffraction limit: FWHMx ¼ 0.32k (60.03k) and …


Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar Jun 2018

Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar

Cappa Publications

Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 °/mm …


Tunable Optical Buffer Through An Analogue To Electro-Magnetically Induced Transparency In Coupled Photonic Crystal Cavities, Changyu Hu, Sebastian A. Schulz, Alexandros A. Liles, Liam O'Faolain Mar 2018

Tunable Optical Buffer Through An Analogue To Electro-Magnetically Induced Transparency In Coupled Photonic Crystal Cavities, Changyu Hu, Sebastian A. Schulz, Alexandros A. Liles, Liam O'Faolain

Cappa Publications

Tunable on-chip optical delay has long been a key target for the research community, as it is the enabling technology behind delay lines, signal re-timing and other applications vital to optical signal processing. To date the field has been limited by high optical losses associated with slow light or delay structures. Here, we present a novel tunable delay line, based on a coupled cavity system exhibiting an Electromagnetically Induced Transparency-like transmission spectrum, with record low loss, around 15dB/ns. By tuning a single cavity the delay of the complete structure can be tuned over 120ps, with the maximum delay approaching 300ps.


Analysis Of The Red And Green Optical Absorption Spectrum Of Gas Phase Ammonia, Nikolai F. Zobov, Phillip A. Coles, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Robert J. Hargreaves, Peter F. Bernath, Jonathan Tennyson, Sergei N. Yurchenko, Oleg L. Polyansky Jan 2018

Analysis Of The Red And Green Optical Absorption Spectrum Of Gas Phase Ammonia, Nikolai F. Zobov, Phillip A. Coles, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Robert J. Hargreaves, Peter F. Bernath, Jonathan Tennyson, Sergei N. Yurchenko, Oleg L. Polyansky

Chemistry & Biochemistry Faculty Publications

Room temperature NH3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 - 15,700 cm-1 and 17,950 - 18,250 cm-1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J = 1 …


Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding May 2017

Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding

Honors Projects

This thesis begins with a foundational section on quantum optics. The single-photon detectors used in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA), which brokered reduced cost for educational use, and the aim of the single-photon work presented in Chapter 1 is to develop modules for use in Illinois Wesleyan's instructional labs beyond the first year of university. Along with the American Association of Physics Teachers, ALPhA encourages capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play the role of passing on, to a next generation of physics majors, …


Computational Renormalization Scheme For Quantum Field Theories, Rainer Grobe, Qichang Su, R E. Wagner Jul 2013

Computational Renormalization Scheme For Quantum Field Theories, Rainer Grobe, Qichang Su, R E. Wagner

Faculty publications – Physics

We propose an alternative technique for numerically renormalizing quantum field theories based on their Hamiltonian formulation. This method is nonperturbative in nature and, therefore, exact to all orders. It does not require any correlation functions or Feynman diagrams. We illustrate this method for a model Yukawa-like theory describing the interaction of electrons and positrons with model photons in one spatial dimension. We show that, after mass renormalization of the fermionic and bosonic single-particle states, all other states in the Fock space have finite energies, which are independent of the momentum cutoff.


Enhancement Of Electron-Positron Pair Creation Due To Transient Excitation Of Field-Induced Bound States, M Jiang, Q Z. Lv, Z M. Sheng, Rainer Grobe, Qichang Su Apr 2013

Enhancement Of Electron-Positron Pair Creation Due To Transient Excitation Of Field-Induced Bound States, M Jiang, Q Z. Lv, Z M. Sheng, Rainer Grobe, Qichang Su

Faculty publications – Physics

We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron …


Pair Creation For Bosons In Electric And Magnetic Fields, Q Z. Lv, A C. Su, M Jiang, Rainer Grobe, Qichang Su Feb 2013

Pair Creation For Bosons In Electric And Magnetic Fields, Q Z. Lv, A C. Su, M Jiang, Rainer Grobe, Qichang Su

Faculty publications – Physics

By solving the quantum field theoretical version of the Klein-Gordon equation numerically, we study the creation process for charged boson-antiboson pairs in static electric and magnetic fields. The fields are perpendicular to each other and spatially localized along the same direction, which permits us to study the crucial impact of the magnetic field's spatial extension on dynamics. If its width is comparable to that of the electric field, we find a magnetically induced Lorentz suppression of the pair-creation process. When the width is increased such that the created bosons can revisit the interaction region, we find a region of exponential …


Suppression Of Pair Creation Due To A Steady Magnetic Field, W Su, M Jiang, Z Q. Lv, Rainer Grobe, Qichang Su Jul 2012

Suppression Of Pair Creation Due To A Steady Magnetic Field, W Su, M Jiang, Z Q. Lv, Rainer Grobe, Qichang Su

Faculty publications – Physics

We investigate the electron-positron pair creation process in a supercritical static electric field in the presence of a static magnetic field that is perpendicular. If both fields vary spatially in one direction the dynamics can be reduced to a set of one-dimensional systems. Using a generalized computational quantum field theoretical procedure, we calculate the time dependence of the spatial density for the created electrons. In the presence of the magnetic field, a significant amount of suppression of pair creation is observed in the simulations and confirmed by an analytical analysis for the limits of short-range fields and long interaction times. …


Pair Creation Enhancement Due To Combined External Fields, M Jiang, W Su, Z Q. Lv, X Lu, Y J. Li, Rainer Grobe, Qichang Su Mar 2012

Pair Creation Enhancement Due To Combined External Fields, M Jiang, W Su, Z Q. Lv, X Lu, Y J. Li, Rainer Grobe, Qichang Su

Faculty publications – Physics

We study the creation of electron-positron pairs from the vacuum induced by a combination of a static electric field and an alternating field. We find that the overall pair production can be increased by two orders of magnitude compared to the yields associated with each field individually. We examine the interesting case where both fields are spatially localized, permitting us to examine the time evolution of the spatial density for the created particle pairs. We find that there are a variety of competing mechanisms that contribute to the total yield.


Local And Nonlocal Spatial Densities In Quantum Field Theory, R E. Wagner, M R. Ware, E V. Stefanovich, Qichang Su, Rainer Grobe Feb 2012

Local And Nonlocal Spatial Densities In Quantum Field Theory, R E. Wagner, M R. Ware, E V. Stefanovich, Qichang Su, Rainer Grobe

Faculty publications – Physics

We use a one-dimensional model system to compare the predictions of two different yardsticks to compute the position of a particle from its quantum field theoretical state. Based on the first yardstick (defined by the Newton-Wigner position operator), the spatial density can be arbitrarily narrow, and its time evolution is superluminal for short time intervals. Furthermore, two spatially distant particles might be able to interact with each other outside the light cone, which is manifested by an asymmetric spreading of the spatial density. The second yardstick (defined by the quantum field operator) does not permit localized states, and the time …


Causality And Relativistic Localization In One-Dimensional Hamiltonians, R E. Wagner, B T. Shields, M R. Ware, Qichang Su, Rainer Grobe Jun 2011

Causality And Relativistic Localization In One-Dimensional Hamiltonians, R E. Wagner, B T. Shields, M R. Ware, Qichang Su, Rainer Grobe

Faculty publications – Physics

We compare the relativistic time evolution of an initially localized quantum particle obtained from the relativistic Schrodinger, the Klein-Gordon and the Dirac equations. By computing the amount of the spatial probability density that evolves outside the light cone we quantify the amount of causality violation for the relativistic Schrodinger Hamiltonian. We comment on the relationship between quantum field theoretical transition amplitudes, commutators of the fields and their bilinear combinations outside the light cone as indicators of a possible causality violation. We point out the relevance of the relativistic localization problem to this discussion and comment on ideas about the supposed …


Electron-Positron Pair Creation Induced By Quantum-Mechanical Tunneling, M Jiang, W Su, X Lu, Z M. Sheng, Y T. Li, J Zhang, Rainer Grobe, Qichang Su May 2011

Electron-Positron Pair Creation Induced By Quantum-Mechanical Tunneling, M Jiang, W Su, X Lu, Z M. Sheng, Y T. Li, J Zhang, Rainer Grobe, Qichang Su

Faculty publications – Physics

We study the creation of electron-positron pairs from the vacuum induced by two spatially displaced static electric fields. The strength and spatial width of each localized field is less than required for pair creation. If, however, the separation between the fields is less than the quantum-mechanical tunneling length associated with the corresponding quantum scattering system, the system produces a steady flux of electron-positron pairs. We compute the time dependence of the pair-creation probability by solving the Dirac equation numerically for various external field sequences. For the special case of two very narrow fields we provide an analytical expression for the …


Time Dilation In Relativistic Two-Particle Interactions, B T. Shields, Rainer Grobe, E V. Stefanovich, M R. Ware, Qichang Su, M C. Morris Nov 2010

Time Dilation In Relativistic Two-Particle Interactions, B T. Shields, Rainer Grobe, E V. Stefanovich, M R. Ware, Qichang Su, M C. Morris

Faculty publications – Physics

We study the orbits of two interacting particles described by a fully relativistic classical mechanical Hamiltonian. We use two sets of initial conditions. In the first set (dynamics 1) the system's center of mass is at rest. In the second set (dynamics 2) the center of mass evolves with velocity V. If dynamics 1 is observed from a reference frame moving with velocity-V, the principle of relativity requires that all observables must be identical to those of dynamics 2 seen from the laboratory frame. Our numerical simulations demonstrate that kinematic Lorentz space-time transformations fail to transform particle observables between the …


Space-Time Properties Of A Boson-Dressed Fermion For The Yukawa Model, R E. Wagner, M R. Ware, Q Su, Rainer Grobe Sep 2010

Space-Time Properties Of A Boson-Dressed Fermion For The Yukawa Model, R E. Wagner, M R. Ware, Q Su, Rainer Grobe

Faculty publications – Physics

We analyze the interaction of fermions and bosons through a one-dimensional Yukawa model. We numerically compute the energy eigenstates that represent a physical fermion, which is a superposition of bare fermionic and bosonic eigenstates of the uncoupled Hamiltonian. It turns out that even fast bare fermions require only low-momentum dressing bosons, which attach themselves to the fast fermion through quantum correlations. We compare the space-time evolution of a physical fermion with that of its bare counterpart and show the importance of using dressed observables. The time evolution of the center of mass as well as the wave packet's spatial width …


Exponential Enhancement Of Field-Induced Pair Creation From The Bosonic Vacuum, R E. Wagner, M R. Ware, Q Su, Rainer Grobe May 2010

Exponential Enhancement Of Field-Induced Pair Creation From The Bosonic Vacuum, R E. Wagner, M R. Ware, Q Su, Rainer Grobe

Faculty publications – Physics

Using numerical solutions to quantum field theory, the creation of boson-antiboson pairs from the vacuum under a very strong localized external electric field is explored. The simulations reveal that the initial linear increase of the number of particles turns into an exponential growth. This self-amplification can be understood as the result of the interaction of the previously generated particles with the creation process. While the number of particles keeps increasing, the spatial shape of the (normalized) charge density of the created particles reaches a universal form that can be related to the bound states of the supercritical potential well. We …


Bosonic Analog Of The Klein Paradox, R E. Wagner, M R. Ware, Q Su, Rainer Grobe Feb 2010

Bosonic Analog Of The Klein Paradox, R E. Wagner, M R. Ware, Q Su, Rainer Grobe

Faculty publications – Physics

The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron- positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox.


Pair Creation Rates For One-Dimensional Fermionic And Bosonic Vacua, T Cheng, M R. Ware, Q Su, Rainer Grobe Dec 2009

Pair Creation Rates For One-Dimensional Fermionic And Bosonic Vacua, T Cheng, M R. Ware, Q Su, Rainer Grobe

Faculty publications – Physics

We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum-mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the …


Creation Of Multiple Electron-Positron Pairs In Arbitrary Fields, T Cheng, Q Su, Rainer Grobe Jul 2009

Creation Of Multiple Electron-Positron Pairs In Arbitrary Fields, T Cheng, Q Su, Rainer Grobe

Faculty publications – Physics

We examine the spontaneous breakdown of the matter vacuum triggered by an external force of arbitrary strength and spatial and temporal variations. We derive a nonperturbative framework that permits the computation of the complete time evolution of various multiple electron-positron pair probabilities. These time-dependent probabilities can be computed from a generating function as well as from solutions to a set of ratelike equations with coupling constants determined by the single-particle solutions to the time-dependent Dirac equation. This approach might be of relevance to the planned experiments to observe for the first time the laser-induced breakdown process of the vacuum.


Limitations Of Decomposition-Based Imaging Of Longitudinal Absorber Configurations, S D. Campbell, S D. Grobe, I L. Goodin, Q Su, Rainer Grobe Feb 2008

Limitations Of Decomposition-Based Imaging Of Longitudinal Absorber Configurations, S D. Campbell, S D. Grobe, I L. Goodin, Q Su, Rainer Grobe

Faculty publications – Physics

We examine theoretically and experimentally an imaging scheme that uses the transverse intensity profile of the scattered light to reconstruct the locations of absorbers embedded in a turbid medium. This method is based on an a priori knowledge of the scattered light patterns associated with a single absorber that is located at various positions inside the medium. We discuss the range of validity of this method, and its sensitivity with regard to noise, and propose an algorithm to improve its accuracy.


Decomposition-Based Recovery Of Absorbers In Turbid Media, S D. Campbell, I L. Goodin, S D. Grobe, Qichang Su, Rainer Grobe Dec 2007

Decomposition-Based Recovery Of Absorbers In Turbid Media, S D. Campbell, I L. Goodin, S D. Grobe, Qichang Su, Rainer Grobe

Faculty publications – Physics

We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.


Classical-Quantum Correspondence In Electron-Positron Pair Creation, N I. Chott, Qichang Su, Rainer Grobe Jul 2007

Classical-Quantum Correspondence In Electron-Positron Pair Creation, N I. Chott, Qichang Su, Rainer Grobe

Faculty publications – Physics

We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics.


Velocity Half-Sphere Model For Multiple Scattering In A Semi-Infinite Medium, S Menon, Q Su, Rainer Grobe May 2007

Velocity Half-Sphere Model For Multiple Scattering In A Semi-Infinite Medium, S Menon, Q Su, Rainer Grobe

Faculty publications – Physics

We show how the velocity half-sphere model [S. Menon, Q. Su, and R. Grobe, Phys. Rev. E 72, 041910 (2005)] recently introduced to predict the propagation of light for an infinite turbid medium can be extended to account for the emission of multiply scattered light for a geometry with a planar boundary. A comparison with exact solutions obtained from Monte Carlo simulations suggests that this approach can improve the predictions of the usual diffusion theory for both isotropic and highly forward scattering media with reflecting interfaces.


Nonlocal Entanglement Of Coherent States, Complementarity, And Quantum Erasure, Christopher C. Gerry, Rainer Grobe Mar 2007

Nonlocal Entanglement Of Coherent States, Complementarity, And Quantum Erasure, Christopher C. Gerry, Rainer Grobe

Faculty publications – Physics

We describe a nonlocal method for generating entangled coherent states of a two-mode field wherein the field modes never meet. The proposed method is an extension of an earlier proposal [C. C. Gerry, Phys. Rev. A 59, 4095 (1999)] for the generation of superpositions of coherent states. A single photon injected into a Mach-Zehnder interferometer with cross-Kerr media in both arms coupling with two external fields in coherent states produces entangled coherent states upon detection at one of the output ports. We point out that our proposal can be alternatively viewed as a "which path" experiment, and in the case …


Temperature-Driven Transition From The Wigner Crystal To The Bond-Charge-Density Wave In The Quasi-One-Dimensional Quarter-Filled Band, R. T. Clay, Rahul Hardikar, S. Mazumdar Jan 2007

Temperature-Driven Transition From The Wigner Crystal To The Bond-Charge-Density Wave In The Quasi-One-Dimensional Quarter-Filled Band, R. T. Clay, Rahul Hardikar, S. Mazumdar

Scholarship and Professional Work - LAS

It is known that within the interacting electron model Hamiltonian for the one-dimensional 1/4-filled band, the singlet ground state is a Wigner crystal only if the nearest-neighbor electron-electron repulsion is larger than a critical value. We show that this critical nearest-neighbor Coulomb interaction is different for each spin subspace, with the critical value decreasing with increasing spin. As a consequence, with the lowering of temperature, there can occur a transition from a Wigner crystal charge-ordered state to a spin-Peierls state that is a bond-charge-density wave with charge occupancies different from the Wigner crystal. This transition is possible because spin excitations …


Unitary And Nonunitary Approaches In Quantum Field Theory, K D. Lamb, Christopher C. Gerry, Rainer Grobe Jan 2007

Unitary And Nonunitary Approaches In Quantum Field Theory, K D. Lamb, Christopher C. Gerry, Rainer Grobe

Faculty publications – Physics

We use a simplified essential state model to compare two quantum field theoretical approaches to study the creation of electron-positron pairs from the vacuum. In the unitary approach the system is characterized by a state with different numbers of particles that is described by occupation numbers and evolves with conserved norm. The nonunitary approach can predict the evolution of wave functions and density operators with a fixed number of particles but time-dependent norms. As an example to illustrate the differences between both approaches, we examine the degree of entanglement for the Klein paradox, which describes the creation of an electron-positron …