Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Astrophysics and Astronomy

2019

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 73

Full-Text Articles in Physics

The Distribution Of Ultra-Diffuse And Ultra-Compact Galaxies In The Frontier Fields, Steven Janssens, Roberto Abraham, Jean Brodie, Duncan Forbes, Aaron Romanowsky Dec 2019

The Distribution Of Ultra-Diffuse And Ultra-Compact Galaxies In The Frontier Fields, Steven Janssens, Roberto Abraham, Jean Brodie, Duncan Forbes, Aaron Romanowsky

Faculty Publications

Large low-surface-brightness galaxies have recently been found to be abundant in nearby galaxy clusters. In this paper, we investigate these ultra-diffuse galaxies (UDGs) in the six Hubble Frontier Fields galaxy clusters: A2744, MACS J0416.1−2403, MACS J0717.5+3745, MACS J1149.5+2223, AS1063, and A370. These are the most massive (1–3 × 1015 M ⊙) and distant (0.308 < z < 0.545) systems in which this class of galaxy has yet been discovered. We estimate that the clusters host of the order of ~200–1400 UDGs inside the virial radius (R 200), consistent with the UDG abundance–halo-mass relation found in the local universe, and suggest that UDGs may be formed in clusters. Within each cluster, however, we find that UDGs are not evenly distributed. Instead their projected spatial distributions are lopsided, and they are deficient in the regions of highest mass density as traced by gravitational lensing. While the deficiency of UDGs in central regions is not surprising, the lopsidedness is puzzling. The UDGs, and their lopsided spatial distributions, may be associated with known substructures late in their infall into the clusters, meaning that we find evidence both for formation of UDGs in clusters and for UDGs falling into clusters. We also investigate the ultra-compact dwarfs (UCDs) residing in the clusters, and find that the spatial distributions of UDGs and UCDs appear anticorrelated. Around 15% of UDGs exhibit either compact nuclei or nearby point sources. Taken together, these observations provide additional evidence for a picture in which at least some UDGs are destroyed in dense cluster environments and leave behind a residue of UCDs.


Precise Mass Determination Of Spt-Cl J2106-5844, The Most Massive Cluster At Z > 1, Jinhyub Kim, M. James Jee, Saul Perlmutter, Brian Hayden, David Rubin, Xiaosheng Huang, Greg Aldering, Jongwan Ko Dec 2019

Precise Mass Determination Of Spt-Cl J2106-5844, The Most Massive Cluster At Z > 1, Jinhyub Kim, M. James Jee, Saul Perlmutter, Brian Hayden, David Rubin, Xiaosheng Huang, Greg Aldering, Jongwan Ko

Physics and Astronomy

We present a detailed high-resolution weak-lensing study of SPT-CL J2106-5844 at z = 1.132, claimed to be the most massive system discovered at z > 1 in the South Pole Telescope Sunyaev–Zel'dovich survey. Based on the deep imaging data from the Advanced Camera for Surveys and Wide Field Camera 3 on board the Hubble Space Telescope, we find that the cluster mass distribution is asymmetric, composed of a main clump and a subclump ~640 kpc west thereof. The central clump is further resolved into two smaller northwestern and southeastern substructures separated by ~150 kpc. We show that this rather complex …


Quantum-Enhanced Advanced Ligo Detectors In The Era Of Gravitational-Wave Astronomy, M. Tse, Haocun Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti, C. D. Blair, D. D. Brown, S. E. Dwyer, Karla E. Ramirez Dec 2019

Quantum-Enhanced Advanced Ligo Detectors In The Era Of Gravitational-Wave Astronomy, M. Tse, Haocun Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti, C. D. Blair, D. D. Brown, S. E. Dwyer, Karla E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).


Tests Of General Relativity With The Binary Black Hole Signals From The Ligo-Virgo Catalog Gwtc-1, B. P. Abbott, S. Mukherjee Nov 2019

Tests Of General Relativity With The Binary Black Hole Signals From The Ligo-Virgo Catalog Gwtc-1, B. P. Abbott, S. Mukherjee

Physics and Astronomy Faculty Publications and Presentations

The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in …


Meps Data Assimilation System, Robert W. Schunk, Larry Gardner Nov 2019

Meps Data Assimilation System, Robert W. Schunk, Larry Gardner

Browse all Datasets

For the current funding opportunity we propose to develop a master system that will enhance the user interface to the MEPS model and enable the scientific community to efficiently use the model. Furthermore, we will build and automate validation tools and improve the efficiency and robustness of the MEPS ensemble averaging scheme. Finally, we will explore the nest step toward a major advancement in MEPS b significantly improving the spatial resolution of one of the data assimilation models to explore meso- and small-scale features.


Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan Nov 2019

Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan

Publications and Research

The open string sector of the topological B-model on CY (m+2)-folds is described by m-graded quivers with superpotentials. This correspondence extends to general m the well known connection between CY (m+2)-folds and gauge theories on the world-volume of D(5-2m)-branes for m = 0, ..., 3. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m+2)-folds are toric. Generalizing the well known m = 1,2 cases, m-dimers significantly simplify the connection between geometry and m-graded quivers. A key …


Realistic Sensitivity Curves For Pulsar Timing Arrays, ‪Jeffrey S. Hazboun, Joseph D. Romano, Tristan L. Smith Nov 2019

Realistic Sensitivity Curves For Pulsar Timing Arrays, ‪Jeffrey S. Hazboun, Joseph D. Romano, Tristan L. Smith

Physics and Astronomy Faculty Publications and Presentations

We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in …


Search For Gravitational-Wave Signals Associated With Gamma-Ray Bursts During The Second Observing Run Of Advanced Ligo And Advanced Virgo, B. P. Abbott, R. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang Nov 2019

Search For Gravitational-Wave Signals Associated With Gamma-Ray Bursts During The Second Observing Run Of Advanced Ligo And Advanced Virgo, B. P. Abbott, R. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, K. E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, W. H. Wang

Physics and Astronomy Faculty Publications and Presentations

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of z ≤ 1. We estimate 0.07–1.80 joint detections with Fermi-GBM per year for the 2019–20 …


First Measurement Of Neutrino Oscillation Parameters Using Neutrinos And Antineutrinos By Nova, M. A. Acero, P. Adamson, L. Aliaga, T. Alion, V. Allakhverdian, S. Altakarli, N. Anfimov, A. Antoshkin, A. Aurisano, A. Back, C. Backhouse, M. Baird, N. Balashov, P. Baldi, B. A. Bambah, S. Bashar, K. Bays, S. Bending, R. Bernstein, V. Bhatnagar, Roberto Petti, Et. Al. Oct 2019

First Measurement Of Neutrino Oscillation Parameters Using Neutrinos And Antineutrinos By Nova, M. A. Acero, P. Adamson, L. Aliaga, T. Alion, V. Allakhverdian, S. Altakarli, N. Anfimov, A. Antoshkin, A. Aurisano, A. Back, C. Backhouse, M. Baird, N. Balashov, P. Baldi, B. A. Bambah, S. Bashar, K. Bays, S. Bending, R. Bernstein, V. Bhatnagar, Roberto Petti, Et. Al.

Faculty Publications

The NOvA experiment has seen a 4.4σ signal of e appearance in a 2 GeVμ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 μe candidates with a background of 10.3 and 102μμ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm 2 32 | = 2.48 +0.11 -0.06 x 10 -3 eV2 / c4 and sin2 θ23 in the ranges …


Estimating The Angular Power Spectrum Of The Gravitational-Wave Background In The Presence Of Shot Noise, Alexander C. Jenkins, Joseph D. Romano, Mairi Sakellariadou Oct 2019

Estimating The Angular Power Spectrum Of The Gravitational-Wave Background In The Presence Of Shot Noise, Alexander C. Jenkins, Joseph D. Romano, Mairi Sakellariadou

Physics and Astronomy Faculty Publications and Presentations

There has been much recent interest in studying anisotropies in the astrophysical gravitational-wave (GW) background, as these could provide us with interesting new information about galaxy clustering and large-scale structure. However, this information is obscured by shot noise, caused by the finite number of GW sources that contribute to the background at any given time. We develop a new method for estimating the angular spectrum of anisotropies, based on the principle of combining statistically-independent data segments. We show that this gives an unbiased estimate of the true, astrophysical spectrum, removing the offset due to shot noise power, and that …


Effects Of Solvent Used For Fabrication On Drug Loading And Release Kinetics Of Electrosprayed Temozolomide-Loaded Plga Microparticles For The Treatment Of Glioblastoma, Daniel A. Rodriguez De Anda, Nareg Ohannesian, Karen S. Martirosyan, Sue Anne Chew Oct 2019

Effects Of Solvent Used For Fabrication On Drug Loading And Release Kinetics Of Electrosprayed Temozolomide-Loaded Plga Microparticles For The Treatment Of Glioblastoma, Daniel A. Rodriguez De Anda, Nareg Ohannesian, Karen S. Martirosyan, Sue Anne Chew

Physics and Astronomy Faculty Publications and Presentations

Glioblastoma multiforme (GBM) is the most common and invasive form of malignant brain tumors and despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with GBM still remains poor. Temozolomide (TMZ) is the chemotherapy drug that is most commonly given orally after surgical resection of these tumors. In this study, the effects of solvents (i.e., dichloromethane and acetonitrile) used for the fabrication of electrosprayed TMZ-loaded poly(lactic-co-glycolic acid) (PLGA) on drug loading, loading efficiency, drug release kinetics, surface morphology, and particle size were investigated. The results from this study demonstrated that by using a larger volume of a solvent …


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Research

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and …


A Near Horizon Extreme Binary Black Hole Geometry, Jacob Ciafre, Maria J. Rodriguez Sep 2019

A Near Horizon Extreme Binary Black Hole Geometry, Jacob Ciafre, Maria J. Rodriguez

All Physics Faculty Presentations

A new solution of four-dimensional vacuum General Relativity is presented. It describes the near horizon region of the extreme (maximally spinning) binary black hole system with two identical extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a non-supersymmetric, near horizon extreme binary black hole geometry of two uncharged black holes. The black holes are co-rotating, their relative distance is fixed, and the solution is uniquely specified by the mass. Asymptotically, the geometry corresponds to the near horizon extreme Kerr (NHEK) black hole. The binary extreme system has finite entropy.


Binary Black Hole Population Properties Inferred From The First And Second Observing Runs Of Advanced Ligo And Advanced Virgo, B. P. Abbott, T. D. Abbott, S. Abraham, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, D. Tuyenbayev, W. H. Wang, Adam Zadrozny Sep 2019

Binary Black Hole Population Properties Inferred From The First And Second Observing Runs Of Advanced Ligo And Advanced Virgo, B. P. Abbott, T. D. Abbott, S. Abraham, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, D. Tuyenbayev, W. H. Wang, Adam Zadrozny

Physics and Astronomy Faculty Publications and Presentations

We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45M(circle dot) and a power-law index of alpha = 1.3(-1.7)(+1.4) (90% credibility). …


Wallaby Early Science − V. Askap Hi Imaging Of The Lyon Group Of Galaxies 351, B. Q. For, L. Staveley-Smith, T. Westmeier, M. Whiting, S. -H. Oh, B. Koribalski, J. Wang, O. I. Wong, G. Bekiaris, L. Cortese, A. Elagali, D. Kleiner, K. Lee-Waddell, Juan P. Madrid, A. Popping, J. Rhee, T. N. Reynolds, J. D. Collier, C. J. Phillips, M. A. Voronkov, O. Mueller, H. Jerjen Sep 2019

Wallaby Early Science − V. Askap Hi Imaging Of The Lyon Group Of Galaxies 351, B. Q. For, L. Staveley-Smith, T. Westmeier, M. Whiting, S. -H. Oh, B. Koribalski, J. Wang, O. I. Wong, G. Bekiaris, L. Cortese, A. Elagali, D. Kleiner, K. Lee-Waddell, Juan P. Madrid, A. Popping, J. Rhee, T. N. Reynolds, J. D. Collier, C. J. Phillips, M. A. Voronkov, O. Mueller, H. Jerjen

Physics and Astronomy Faculty Publications and Presentations

We present an HI study of the galaxy group LGG 351 usingWidefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science data observed with the Australian Square Kilometre Array Pathfinder (ASKAP). LGG 351 resides behind the M 83 group at a velocity range (cz) of ∼3500–4800 km s−1 within the rich Hydra-Centaurus overdensity region. We detect 40 sources with the discovery of a tidally interacting galaxy pair and two new HI sources that are not presented in previous optical catalogues. 23 out of 40 sources have new redshifts derived from the new HI data. This study is the largest WALLABY …


Directional Limits On Persistent Gravitational Waves Using Data From Advanced Ligo’S First Two Observing Runs, B. P. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, Wenhui Wang, Adam Zadrozny, Joseph D. Romano Sep 2019

Directional Limits On Persistent Gravitational Waves Using Data From Advanced Ligo’S First Two Observing Runs, B. P. Abbott, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, Robert Stone, D. Tuyenbayev, Wenhui Wang, Adam Zadrozny, Joseph D. Romano

Physics and Astronomy Faculty Publications and Presentations

We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα;Θ < ð0.05–25Þ × 10−8 erg cm−2 s−1 Hz−1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at ΩαðΘÞ < ð0.19–2.89Þ × 10−8 sr−1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5–3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0 < ð3.6–4.7Þ × 10−25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data


Unitarity Of The Infinite-Volume Three-Particle Scattering Amplitude Arising From A Finite-Volume Formalism, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe, Adam P. Szczepaniak Sep 2019

Unitarity Of The Infinite-Volume Three-Particle Scattering Amplitude Arising From A Finite-Volume Formalism, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe, Adam P. Szczepaniak

Physics Faculty Publications

Hansen and Sharpe [Phys. Rev. D 92, 114509 (2015)] derived a relation between the scattering amplitude of three identical bosons,M3, and a real function referred to as the divergence-free K matrix and denoted Kdf;3. The result arose in the context of a relation between finite-volume energies and Kdf;3, derived to all orders in the perturbative expansion of a generic low-energy effective field theory. In this work we set aside the role of the finite volume and focus on the infinite-volume relation between Kdf;3 and M3. We show that, for any …


Wallaby Early Science − V. Askap Hi Imaging Of The Lyon Group Of Galaxies 351, B. Q. For, Lister Staveley-Smith, Tobias Westmeier, M. Whiting, S. -H. Oh, Baerbel Koribalski, Juan P. Madrid Aug 2019

Wallaby Early Science − V. Askap Hi Imaging Of The Lyon Group Of Galaxies 351, B. Q. For, Lister Staveley-Smith, Tobias Westmeier, M. Whiting, S. -H. Oh, Baerbel Koribalski, Juan P. Madrid

Physics and Astronomy Faculty Publications and Presentations

We present an HI study of the galaxy group LGG 351 using Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science data observed with the Australian Square Kilometre Array Pathfinder (ASKAP). LGG 351 resides behind the M 83 group at a velocity range (cz) of ∼3500–4800 km s−1 within the rich Hydra-Centaurus overdensity region. We detect 40 sources with the discovery of a tidally interacting galaxy pair and two new HI sources that are not presented in previous optical catalogues. 23 out of 40 sources have new redshifts derived from the new HI data. This study is the largest …


The Gene Silencing Protein Morc-1 Topologically Entraps Dna And Forms Multimeric Assemblies To Cause Dna Compaction., Hyeongjun Kim, Linda Yen, Somsakul P. Wongpalee, Jessica A. Kirshner, Nicita Mehta, Yan Xue, Jonathan B. Johnston, Alma L. Burlingame, John K. Kim, Joseph J. Loparo, Steve E. Jacobsen Aug 2019

The Gene Silencing Protein Morc-1 Topologically Entraps Dna And Forms Multimeric Assemblies To Cause Dna Compaction., Hyeongjun Kim, Linda Yen, Somsakul P. Wongpalee, Jessica A. Kirshner, Nicita Mehta, Yan Xue, Jonathan B. Johnston, Alma L. Burlingame, John K. Kim, Joseph J. Loparo, Steve E. Jacobsen

Physics and Astronomy Faculty Publications and Presentations

Highlights

  • Caenorhabditis elegans MORC-1 traps DNA loops

  • Recruitment of additional MORC-1s cause further loop trapping and DNA compaction

  • MORC-1 assemblages become topologically entrapped on DNA

  • MORC-1 forms discrete foci in vivo and can phase transition in vitro

Summary

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific …


A Precise Determination Of (Anti)Neutrino Fluxes With (Anti)Neutrino-Hydrogen Interactions, H. Duyang, B. Guo, Roberto Petti Aug 2019

A Precise Determination Of (Anti)Neutrino Fluxes With (Anti)Neutrino-Hydrogen Interactions, H. Duyang, B. Guo, Roberto Petti

Faculty Publications

We present a novel method to accurately determine the flux of neutrinos and antineutrinos, one of the dominant systematic uncertainty affecting current and future long-baseline neutrino experiments, as well as precision neutrino scattering experiment. Using exclusive topologies in v()-hydrogen interactions, vµp→µ+, µp → µ +pπ, and µp → µ + n with small hadronic energy, we achieve an overall accuracy on the relative fluxes better than 1% in the energy range covering most of the available flux. Since we cannot rely on simulations nor model …


Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky Jul 2019

Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky

Faculty Publications

Stellar halos offer fossil evidence for hierarchical structure formation. Since halo assembly is predicted to be scale-free, stellar halos around low-mass galaxies constrain properties such as star formation in the accreted subhalos and the formation of dwarf galaxies. However, few observational searches for stellar halos in dwarfs exist. Here we present gi photometry of resolved stars in isolated Local Group dwarf irregular galaxy IC 1613 (M sstarf ~ 108 M ⊙). These Subaru/Hyper Suprime-Cam observations are the widest and deepest of IC 1613 to date. We measure surface density profiles of young main-sequence, intermediate to old red giant branch, and …


Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume Jul 2019

Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume

Faculty Publications

We present spatially resolved stellar kinematics of the well-studied ultra-diffuse galaxy (UDG) Dragonfly 44, as determined from 25.3 hr of observations with the Keck Cosmic Web Imager. The luminosity-weighted dispersion within the half-light radius is ${\sigma }_{1/2}={33}_{-3}^{+3}$ km s−1, lower than what we had inferred before from a DEIMOS spectrum in the Hα region. There is no evidence for rotation, with ${V}_{\max }/\langle \sigma \rangle \lt 0.12$ (90% confidence) along the major axis, in possible conflict with models where UDGs are the high-spin tail of the normal dwarf galaxy distribution. The spatially averaged line profile is more peaked than a …


New Constraints On Early-Type Galaxy Assembly From Spectroscopic Metallicities Of Globular Clusters In M87, Alexa Villaume, Aaron Romanowsky, Jean Brodie, Jay Strader Jul 2019

New Constraints On Early-Type Galaxy Assembly From Spectroscopic Metallicities Of Globular Clusters In M87, Alexa Villaume, Aaron Romanowsky, Jean Brodie, Jay Strader

Faculty Publications

The observed characteristics of globular cluster (GC) systems, such as metallicity distributions, are commonly used to place constraints on galaxy formation models. However, obtaining reliable metallicity values is particularly difficult because of our limited means to obtain high quality spectroscopy of extragalactic GCs. Often, "color–metallicity relations" are invoked to convert easier-to-obtain photometric measurements into metallicities, but there is no consensus on what form these relations should take. In this paper we make use of multiple photometric data sets and iron metallicity values derived from applying full-spectrum stellar population synthesis models to deep Keck/LRIS spectra of 177 GCs centrally located around …


A Radial Velocity Survey Of Embedded Sources In The Rho Ophiuchi Cluster, Timothy Sullivan, Bruce Wilking, Thomas Greene, Lindsey Lisalda, Erika Gibb, Chemeda Ejeta Jul 2019

A Radial Velocity Survey Of Embedded Sources In The Rho Ophiuchi Cluster, Timothy Sullivan, Bruce Wilking, Thomas Greene, Lindsey Lisalda, Erika Gibb, Chemeda Ejeta

Physics Faculty Works

No abstract provided.


Task-Layer Multiplicity As A Measure Of Community Level Health, Phil Fraundorf Jul 2019

Task-Layer Multiplicity As A Measure Of Community Level Health, Phil Fraundorf

Physics Faculty Works

Te insights of many disciplines, and of commonsense, about individual-level well-being might be strengthened by a shif in focus to community-level well-being in a way that respects belief systems as well as the power of each individual. We start with the jargon of complex systems and the possibility that a small number of broken symmetries, marked by the edges of a hierarchical series of physical subsystem types, underlie the delicate correlation-based complexity of life on our planet’s surface. We show that an information-theory-inspired model of attention-focus on correlation layers, which looks in/out from the boundaries of skin, family, and culture, …


Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil Jun 2019

Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil

Chemistry and Biochemistry Faculty Research

Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed.


On The Balance Between Plasma And Magnetic Pressure Across Equatorial Plasma Depletions, J. Rodríguez-Zuluaga, C. Stolle, Y. Yamazaki, H. Lühr, J. Park, Ludger Scherliess, J. L. Chau Jun 2019

On The Balance Between Plasma And Magnetic Pressure Across Equatorial Plasma Depletions, J. Rodríguez-Zuluaga, C. Stolle, Y. Yamazaki, H. Lühr, J. Park, Ludger Scherliess, J. L. Chau

All Physics Faculty Publications

In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. …


Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie Jun 2019

Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie

Faculty Publications

Using the newly commissioned Keck Cosmic Web Imager (KCWI) instrument on the Keck II telescope, we analyze the stellar kinematics and stellar populations of the well-studied massive early-type galaxy (ETG) NGC 1407. We obtained high signal-to-noise integral field spectra for a central and an outer (around one effective radius toward the southeast direction) pointing with integration times of just 600 s and 2400 s, respectively. We confirm the presence of a kinematically distinct core also revealed by VLT/MUSE data of the central regions. While NGC 1407 was previously found to have stellar populations characteristic of massive ETGs (with radially constant …


How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei Jun 2019

How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei

Physics & Astronomy Faculty Research

The origin of fast radio bursts (FRBs) is still unknown. Multiwavelength observations during or shortly after the FRB phase would be essential to identify the counterpart of an FRB and to constrain its progenitor and environment. In this work, we investigate the brightness of the “fast optical bursts” (FOBs) associated with FRBs and the prospects of detecting them. We investigate several inverse Compton (IC) scattering processes that might produce an FOB, including both the one-zone and two-zone models. We also investigate the extension of the same mechanism of FRB emission to the optical band. We find that a detectable FOB …


Variability In The Atmosphere Of The Hot Jupiter Kepler-76b, Brian Jackson, Elisabeth Adams, Wesley Sandidge, Steven Kreyche, Jennifer Briggs Jun 2019

Variability In The Atmosphere Of The Hot Jupiter Kepler-76b, Brian Jackson, Elisabeth Adams, Wesley Sandidge, Steven Kreyche, Jennifer Briggs

Physics Faculty Publications and Presentations

No abstract provided.