Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Semiclassical Partition Functions For Gravity With Cosmic Strings, Christopher L. Duston Jan 2013

Semiclassical Partition Functions For Gravity With Cosmic Strings, Christopher L. Duston

Physics Faculty Publications

In this paper we describe an approach to construct semiclassical partition functions in gravity which are complete in the sense that they contain a complete description of the differentiable structures of the underlying 4-manifold. In addition, we find our construction naturally includes cosmic strings. We prove that the mass density of these strings uniquely specifies the topology of the leaves of a dimension 2 foliation, and conjecture that spacetime topology emerges as a result of the symmetry breaking of the fundamental fields. We discuss some possible applications of the partition functions in the fields of both quantum gravity and topological …


Topspin Networks In Loop Quantum Gravity, Christopher L. Duston Jan 2012

Topspin Networks In Loop Quantum Gravity, Christopher L. Duston

Physics Faculty Publications

We discuss the extension of loop quantum gravity to topspin networks, a proposal which allows topological information to be encoded in spin networks. We will show that this requires minimal changes to the phase space, C*-algebra and Hilbert space of cylindrical functions. We will also discuss the area and Hamiltonian operators, and show how they depend on the topology. This extends the idea of 'background independence' in loop quantum gravity to include topology as well as geometry. It is hoped this work will confirm the usefulness of the topspin network formalism and open up several new avenues for research into …


Exotic Smoothness In Four Dimensions And Euclidean Quantum Gravity, Christopher L. Duston May 2010

Exotic Smoothness In Four Dimensions And Euclidean Quantum Gravity, Christopher L. Duston

Physics Faculty Publications

In this paper we calculate the effect of the inclusion of exotic smooth structures on typical observables in Euclidean quantum gravity. We do this in the semiclassical regime for several gravitational free-field actions and find that the results are similar, independent of the particular action that is chosen. These are the first results of their kind in dimension four, which we extend to include one-loop contributions as well. We find these topological features can have physically significant results without the need for additional exotic physics.