Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Physics

Magnetohydrodynamic Modeling Of Three Van Allen Probes Storms In 2012 And 2013, J. Paral, M. K. Hudson, B. T. Kress, M. J. Wiltberger Aug 2015

Magnetohydrodynamic Modeling Of Three Van Allen Probes Storms In 2012 And 2013, J. Paral, M. K. Hudson, B. T. Kress, M. J. Wiltberger

Dartmouth Scholarship

Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L=4.5, well within the computed magnetopause location. We compare ULF wave …


Higgs Shifts From Electron–Positron Annihilations Near Neutron Stars, Gary A. Wegner, Roberto Onofrio Jul 2015

Higgs Shifts From Electron–Positron Annihilations Near Neutron Stars, Gary A. Wegner, Roberto Onofrio

Dartmouth Scholarship

We discuss the potential for using neutron stars to determine bounds on the Higgs-Kretschmann coupling by looking at peculiar shifts in gamma-ray spectroscopic features. In particular, we reanalyze multiple lines observed in GRB781119 detected by two gamma-ray spectrometers, and derive an upper bound on the Higgs-Kretschmann coupling that is much more constraining than the one recently obtained from white dwarfs. This calls for targeted analyses of spectra of gamma-ray bursts from more recent observatories, dedicated searches for differential shifts on electron–positron and proton–antiproton annihilation spectra in proximity of compact sources, and signals of electron and proton cyclotron lines from the …


Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd Jun 2015

Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd

Dartmouth Scholarship

During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time, regions of enhanced scintillation are identified in the context of coupling processes between the solar wind and the magnetosphere–ionosphere system. Large southward IMF and …


Gravitational-Wave Mediated Preheating, Stephon Alexander, Sam Cormack, Antonino Marcianò, Nicolás Yunes Apr 2015

Gravitational-Wave Mediated Preheating, Stephon Alexander, Sam Cormack, Antonino Marcianò, Nicolás Yunes

Dartmouth Scholarship

We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.


Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura Feb 2015

Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura

Dartmouth Scholarship

We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that a …


Information-Entropic Measure Of Energy-Degenerate Kinks In Two-Field Models, R.A.C. Correa, A. De Souza Dutra, M. Gleiser Oct 2014

Information-Entropic Measure Of Energy-Degenerate Kinks In Two-Field Models, R.A.C. Correa, A. De Souza Dutra, M. Gleiser

Dartmouth Scholarship

We investigate the existence and properties of kink-like solitons in a class of models with two interacting scalar fields. In particular, we focus on models that display both double and single-kink solutions, treatable analytically using the Bogomol'nyi–Prasad–Sommerfield bound (BPS). Such models are of interest in applications that include Skyrmions and various superstring-motivated theories. Exploring a region of parameter space where the energy for very different spatially-bound configurations is degenerate, we show that a newly-proposed momentum–space entropic measure called Configurational Entropy (CE) can distinguish between such energy-degenerate spatial profiles. This information-theoretic measure of spatial complexity provides a complementary perspective to situations …


Discontinuities And Alfvenic Fluctuations In The Solar Wind, G. Paschmann, S. Haaland, B. Sonnerup, T. Knetter May 2013

Discontinuities And Alfvenic Fluctuations In The Solar Wind, G. Paschmann, S. Haaland, B. Sonnerup, T. Knetter

Dartmouth Scholarship

We examine the Alfvenicity of a set of 188 solar wind directional discontinuities (DDs) identified in the Cluster data from 2003 by Knetter (2005), with the objective of separating rotational discontinuities (RDs) from tangential ones (TDs). The DDs occurred over the full range of solar wind velocities and magnetic shear angles. By performing the Walen test in the de Hoffmann–Teller (HT) frame, we show that 77 of the 127 crossings for which a good HT frame was found had plasma flow speeds exceeding 80 % of the Alfven speed at an average angular deviation of 7.7◦; 33 cases had speeds …


Effective Field Theory Approach To Gravitationally Induced Decoherence, M. P. Blencowe Jan 2013

Effective Field Theory Approach To Gravitationally Induced Decoherence, M. P. Blencowe

Dartmouth Scholarship

Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that gravity as an environment induces the rapid decoherence of stationary matter superposition states when the energy differences in the superposition exceed the Planck energy scale.


Gauge Field Preheating At The End Of Inflation, J. Tate Deskins, John T. Giblin Jr., Robert R. Caldwell Jan 2013

Gauge Field Preheating At The End Of Inflation, J. Tate Deskins, John T. Giblin Jr., Robert R. Caldwell

Dartmouth Scholarship

Here we consider the possibility of preheating the Universe via the parametric amplification of a massless, U(1) abelian gauge field. We assume that the gauge field is coupled to the inflaton via a conformal factor with one free parameter. We present the results of high-resolution three-dimensional simulations of this model and show this mechanism efficiently preheats the Universe to a radiation-dominated final state.


Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos Aug 2012

Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially localized, long-lived structures known …


More About Arc-Polarized Structures In The Solar Wind, S A. Haaland, B Sonnerup, G Paschmann May 2012

More About Arc-Polarized Structures In The Solar Wind, S A. Haaland, B Sonnerup, G Paschmann

Dartmouth Scholarship

We report results from a Cluster-based study of the properties of 28 arc-polarized magnetic structures (also called rotational discontinuities) in the solar wind. These Alfve ́nic events were selected from the database created and analyzed by Knetter (2005) by use of criteria chosen to elim- inate ambiguous cases. His studies showed that standard, four-spacecraft timing analysis in most cases lacks sufficient accuracy to identify the small normal magnetic field compo- nents expected to accompany such structures, leaving unan- swered the question of their existence. Our study aims to break this impasse. By careful application of minimum vari- ance analysis of …


Non-Equilibrium Landauer Transport Model For Hawking Radiation From A Black Hole, P. D. Nation, M. P. Blencowe, Franco Nori Mar 2012

Non-Equilibrium Landauer Transport Model For Hawking Radiation From A Black Hole, P. D. Nation, M. P. Blencowe, Franco Nori

Dartmouth Scholarship

We propose that the Hawking radiation energy and entropy flow rates from a black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer transport process. Support for this viewpoint comes from previous calculations invoking conformal symmetry in the near-horizon region, which give radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The Landauer approach shows in a direct way the particle statistics independence of the energy and entropy fluxes of a black hole radiating into vacuum, as well as one near thermal equilibrium with its environment. …


A Model Of So-Called "Zebra" Emissions In Solar Flare Radio Burst Continua, R. A. Treumann, R. Nakamura, W. Baumjohann Sep 2011

A Model Of So-Called "Zebra" Emissions In Solar Flare Radio Burst Continua, R. A. Treumann, R. Nakamura, W. Baumjohann

Dartmouth Scholarship

A simple mechanism for the generation of elec- tromagnetic “Zebra” pattern emissions is proposed. “Zebra” bursts are regularly spaced narrow-band radio emissions on the otherwise broadband radio continuum emitted by the ac- tive solar corona. The mechanism is based on the generation of an ion-ring distribution in a magnetic mirror geometry in the presence of a properly directed field-aligned electric po- tential field. Such ion-rings or ion-conics are well known from magnetospheric observations. Under coronal condi- tions they may become weakly relativistic. In this case the ion-cyclotron maser generates a number of electromagnetic ion-cyclotron harmonics which modulate the electron maser …


The Role Of The Bow Shock In Solar Wind-Magnetosphere Coupling, R E. Lopez, V G. Merkin, J G. Lyon Jun 2011

The Role Of The Bow Shock In Solar Wind-Magnetosphere Coupling, R E. Lopez, V G. Merkin, J G. Lyon

Dartmouth Scholarship

No abstract provided.


The Trilinear Hamiltonian: A Zero-Dimensional Model Of Hawking Radiation From A Quantized Source, Paul D. Nation, Miles P. Blencowe Sep 2010

The Trilinear Hamiltonian: A Zero-Dimensional Model Of Hawking Radiation From A Quantized Source, Paul D. Nation, Miles P. Blencowe

Dartmouth Scholarship

We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. We derive the conditions under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the …


Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos Aug 2010

Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos

Dartmouth Scholarship

Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, …


On Arc-Polarized Structures In The Solar Wind, B U. Sonnerup, S E. Haaland, G Paschmann Jun 2010

On Arc-Polarized Structures In The Solar Wind, B U. Sonnerup, S E. Haaland, G Paschmann

Dartmouth Scholarship

A theoretical model is proposed to account for some of the behavior of arc-polarized magnetic structures seen in the solar wind. To this end, an exact analytical solu- tion is developed that describes infinite plane wave trains of arbitrary amplitude in a plasma governed by ideal Hall MHD. The main focus is on intermediate-mode wave trains, which display double-branched magnetic hodogram signatures sim- ilar to those seen in the solar wind. The theoretically derived hodograms have field rotation in the ion-polarized sense at a slightly depressed field magnitude on one branch and an electron-polarized rotation at a slightly enhanced field …


Comparison Of Birkeland Current Observations During Two Magnetic Cloud Events With Mhd Simulations, H Korth, B J. Anderson, J G. Lyon, M Wiltberger Mar 2008

Comparison Of Birkeland Current Observations During Two Magnetic Cloud Events With Mhd Simulations, H Korth, B J. Anderson, J G. Lyon, M Wiltberger

Dartmouth Scholarship

Low altitude field-aligned current densities ob-

tained from global magnetospheric simulations are compared

with two-dimensional distributions of Birkeland currents at

the topside ionosphere derived from magnetic field observa-

tions by the constellation of Iridium satellites. We present the

analysis of two magnetic cloud events, 17–19 August 2003

and 19–21 March 2001, where the interplanetary magnetic

field (IMF) rotates slowly (∼10◦/h) to avoid time-aliasing in

the magnetic perturbations used to calculate the Birkeland

currents. In the August 2003 event the IMF rotates from

southward to northward while maintaining a negative IMF

By during much of the interval. During the March 2001 …


Lower Limit To The Scale Of An Effective Quantum Theory Of Gravitation, R. R. Caldwell, Daniel Grin Jan 2008

Lower Limit To The Scale Of An Effective Quantum Theory Of Gravitation, R. R. Caldwell, Daniel Grin

Dartmouth Scholarship

An effective quantum theory of gravitation in which gravity weakens at energies higher than ∼10−3  eV is one way to accommodate the apparent smallness of the cosmological constant. Such a theory predicts departures from the Newtonian inverse-square force law on distances below ∼0.05  mm. However, it is shown that this modification also leads to changes in the long-range behavior of gravity and is inconsistent with observed gravitational lenses.


First Results From Ideal 2-D Mhd Reconstruction: Magnetopause Reconnection Event Seen By Cluster, W. L. Teh, B. U. O. Sonnerup Jan 2008

First Results From Ideal 2-D Mhd Reconstruction: Magnetopause Reconnection Event Seen By Cluster, W. L. Teh, B. U. O. Sonnerup

Dartmouth Scholarship

We have applied a new reconstruction method (Sonnerup and Teh, 2008), based on the ideal single-fluid MHD equations in a steady-state, two-dimensional geometry, to a reconnection event observed by the Cluster-3 (C3) space- craft on 5 July 2001, 06:23 UT, at the dawn-side Northern- Hemisphere magnetopause. The event has been previously studied by use of Grad-Shafranov (GS) reconstruction, per- formed in the deHoffmann-Teller frame, and using the as- sumption that the flow effects were either negligible or the flow was aligned with the magnetic field. Our new method allows the reconstruction to be performed in the frame of reference moving …


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me Mar 2006

The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me

Dartmouth Scholarship

The structure and formation mechanism of a to- tal of five Flux Transfer Events (FTEs), encountered on the equatorward side of the northern cusp by the Cluster space- craft, with separation of ∼5000 km, are studied by apply- ing the Grad-Shafranov (GS) reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assump- tion that the structure is two-dimensional (2-D) and time- independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggest- ing …


Dynamo Regimes With A Nonhelical Forcing, Pablo D. Mininni, Yannick Ponty, David C. Montgomery, Jean-Francois Pinton Jun 2005

Dynamo Regimes With A Nonhelical Forcing, Pablo D. Mininni, Yannick Ponty, David C. Montgomery, Jean-Francois Pinton

Dartmouth Scholarship

A three-dimensional numerical computation of magnetohydrodynamic dynamo behavior is described. The dynamo is mechanically forced with a driving term of the Taylor-Green type. The magnetic field development is followed from negligibly small levels to saturated values that occur at magnetic energies comparable to the kinetic energies. Although there is locally a nonzero helicity density, there is no overall integrated helicity in the system. Persistent oscillations are observed in the saturated state for not-too-large mechanical Reynolds numbers, oscillations in which the kinetic and magnetic energies vary out of phase but with no reversal of the magnetic field. The flow pattern exhibits …


Self‐Consistent Diffusive Lifetimes Of Weibel Magnetic Fields In Gamma‐Ray Bursts, C. H. Jaroschek, H. Lesch, R. A. Treumann Dec 2004

Self‐Consistent Diffusive Lifetimes Of Weibel Magnetic Fields In Gamma‐Ray Bursts, C. H. Jaroschek, H. Lesch, R. A. Treumann

Dartmouth Scholarship

Weibel filamentation in relativistic plasma shell collisions has been demonstrated as an efficient and fast mechanism for the generation of near-equipartition magnetic fields in self-consistent particle-in-cell (PIC) simulations. In generic γ-ray burst (GRB) models with kinetically dominated plasma outflow, sufficient strength and lifetime of magnetic fields are essential to validate synchrotron emission as the source of radiative outbursts. In this article we report on self-consistent PIC simulations of pair-plasma shell collisions in the highly relativistic regime with particle ensembles up to 5 × 108. Energy dependence of magnetic field generation in the Weibel process is discussed, and for …


Affinity For Scalar Fields To Dissipate, Arjun Berera, Rudnei O. Ramos Apr 2001

Affinity For Scalar Fields To Dissipate, Arjun Berera, Rudnei O. Ramos

Dartmouth Scholarship

The zero-temperature effective equation of motion is derived for a scalar field interacting with other fields. For a broad range of cases, involving interaction with as few as one or two fields, dissipative regimes are found for the scalar field system. The zero-temperature limit constitutes a baseline effect that will be prevalent in any general statistical state. Thus, the results found here provide strong evidence that dissipation is the norm not the exception for an interacting scalar field system. For application to inflationary cosmology, this provides convincing evidence that warm inflation could be a natural dynamics once proper treatment of …


A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Jul 1999

A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

A quantum field theory warm inflation model is presented that solves the horizon and flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.


Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …


Lower And Upper Bounds On Internal-Wave Frequencies In Stratified Rotating Fluids, Benoit Cushman-Roisin Dec 1996

Lower And Upper Bounds On Internal-Wave Frequencies In Stratified Rotating Fluids, Benoit Cushman-Roisin

Dartmouth Scholarship

According to classical theories, the frequencies of internal-gravity waves in stratified rotating fluids must lie between the Brunt-Väisälä frequency (a measure of the vertical density stratification) and the Coriolis frequency (equal to twice the rotation rate about the vertical axis). It is shown here that, in the case of the Earth's rotation where the pole-to-pole axis of rotation is almost everywhere not parallel to the local vertical, the range of realizable frequencies is broader. New formulas are derived for the lower and upper bounds of the frequencies.


Distinguishing A Charged Higgs Signal From A Heavy Wr Signal, David I. Kaiser Mar 1993

Distinguishing A Charged Higgs Signal From A Heavy Wr Signal, David I. Kaiser

Dartmouth Scholarship

It is shown that non-Standard Model bosons should obey an observable asymmetry in their decays to taus. This asymmetry enables a distinction to be made between charged Higgsboson signalsand heavy right-handed Wboson signals,by reconstructing the orientation of the z with respect to the beam axis.