Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Series

2010

Distorted-wave models

Articles 1 - 2 of 2

Full-Text Articles in Physics

Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analog, Christopher J. Colyer, Susan M. Bellm, B. Lohmann, G. Friedrich Hanne, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning Sep 2010

Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analog, Christopher J. Colyer, Susan M. Bellm, B. Lohmann, G. Friedrich Hanne, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning

Physics Faculty Research & Creative Works

Triple differential cross sections for the electron-impact ionization of the outer valence orbital of tetrahydrofuran have been measured using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and at an ejected electron energy of 10 eV, over a range of momentum transfers. The experimental results are compared with theoretical calculations carried out using the molecular three-body distorted wave model. The results obtained are important for gaining an understanding of electron driven processes at a molecular level and for modeling energy deposition in living tissue.


Fivefold Differential Cross Sections For Ground-State Ionization Of Aligned H₂ By Electron Impact, Arne Senftleben, Ola A. Al-Hagan, Thomas Pfluger, Xueguang Ren, Don H. Madison, Alexander Dorn, Joachim Hermann Ullrich Jul 2010

Fivefold Differential Cross Sections For Ground-State Ionization Of Aligned H₂ By Electron Impact, Arne Senftleben, Ola A. Al-Hagan, Thomas Pfluger, Xueguang Ren, Don H. Madison, Alexander Dorn, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

We discuss the ionization of aligned hydrogen molecules into their ionic ground state by 200 eV electrons. Using a reaction microscope, the complete electron scattering kinematics is imaged over a large solid angle. Simultaneously, the molecular alignment is derived from postcollision dissociation of the residual ion. It is found that the ionization cross section is maximized for small angles between the internuclear axis and the momentum transfer. Fivefold differential cross sections (5DCSs) reveal subtle differences in the scattering process for the distinct alignments. We compare our observations with theoretical 5DCSs obtained with an adapted molecular three-body distorted wave model that …