Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

Series

2022

Discipline
Institution
Keyword

Articles 1 - 30 of 76

Full-Text Articles in Physics

Serpentine Micromixers Using Extensional Mixing Elements, George Tomaras, Chandrasekhar R. Kothapalli, Petru S. Fodor Oct 2022

Serpentine Micromixers Using Extensional Mixing Elements, George Tomaras, Chandrasekhar R. Kothapalli, Petru S. Fodor

Physics Faculty Publications

Computational fluid dynamics modeling was used to characterize the effect of the integration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid motion along curved channels are combined with elongational flows and asymmetric longitudinal eddies that develop in the constriction region. The resulting complex flow structure is characterized by folding and stretching of the fluid volumes, which can promote enhanced mixing. Optimization of the geometrical parameters defining the constriction region allows for the development of an efficient micromixer topology that shows …


Two-Current Transition Amplitudes With Two-Body Final States, Keegan H. Sherman, Feliipe G. Ortega-Gama, Raúl A. Briceño, Andrew W. Jackura Jun 2022

Two-Current Transition Amplitudes With Two-Body Final States, Keegan H. Sherman, Feliipe G. Ortega-Gama, Raúl A. Briceño, Andrew W. Jackura

Physics Faculty Publications

We derive the on-shell form of amplitudes containing two external currents with a single hadron in the initial state and two hadrons in the final state, denoted as 1 + J → 2 + J . This class of amplitude is relevant in precision tests of the Standard Model as well as for exploring the structure of excited states in the QCD spectrum. We present a model-independent description of the amplitudes where we sum to all orders in the strong interaction. From this analytic form we are able to extract transition and elastic resonance form factors consistent with previous work …


Partial Muon Capture Rates In A = 3 And A = 6 Nuclei With Chiral Effective Field Theory, G. B. King, S. Pastore, M. Piarulli, Rocco Schiavilla Apr 2022

Partial Muon Capture Rates In A = 3 And A = 6 Nuclei With Chiral Effective Field Theory, G. B. King, S. Pastore, M. Piarulli, Rocco Schiavilla

Physics Faculty Publications

Searches for neutrinoless double-β decay rates are crucial in addressing questions within fundamental symmetries and neutrino physics. The rates of these decays depend not only on unknown parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract information about the neutrino, one needs an accurate treatment of the complex many-body dynamics of the nucleus. Neutrinoless double-β decays take place at momentum transfers on the order of 100MeV /c and require both nuclear electroweak vector and axial current matrix elements. Muon capture, a process in the same momentum transfer regime, has readily available experimental data to validate …


Research Priorities Of Applying Low-Cost Pm2.5 Sensors In Southeast Asian Countries, Shih-Chun Candice Lung, To Thi Hien, Maria Obiminda L. Cambaliza, Ohnmar May Tin Hlaing, Nguyen Thi Kim Oanh, Mohd Talib Latif, Puji Lestari, Abdus Salam, Shih-Yu Lee, Wen-Cheng Vincent Wang Jan 2022

Research Priorities Of Applying Low-Cost Pm2.5 Sensors In Southeast Asian Countries, Shih-Chun Candice Lung, To Thi Hien, Maria Obiminda L. Cambaliza, Ohnmar May Tin Hlaing, Nguyen Thi Kim Oanh, Mohd Talib Latif, Puji Lestari, Abdus Salam, Shih-Yu Lee, Wen-Cheng Vincent Wang

Physics Faculty Publications

The low-cost and easy-to-use nature of rapidly developed PM2.5 sensors provide an opportunity to bring breakthroughs in PM2.5 research to resource-limited countries in Southeast Asia (SEA). This review provides an evaluation of the currently available literature and identifies research priorities in applying low-cost sensors (LCS) in PM2.5 environmental and health research in SEA. The research priority is an outcome of a series of participatory workshops under the umbrella of the International Global Atmospheric Chemistry Project–Monsoon Asia and Oceania Networking Group (IGAC–MANGO). A literature review and research prioritization are conducted with a transdisciplinary perspective of providing useful scientific evidence in assisting …


New Measurements Of The Beam-Normal Single Spin Asymmetry In Elastic Electron Scattering Over A Range Of Spin-0 Nuclei, Prex And Crex Collaborations, D. Adhikari, H. Albataineh, D. Androic, F. Hauenstein, M.N.H. Rashad, W. Zhang, J. Zhang, X. Zheng, Et Al. Jan 2022

New Measurements Of The Beam-Normal Single Spin Asymmetry In Elastic Electron Scattering Over A Range Of Spin-0 Nuclei, Prex And Crex Collaborations, D. Adhikari, H. Albataineh, D. Androic, F. Hauenstein, M.N.H. Rashad, W. Zhang, J. Zhang, X. Zheng, Et Al.

Physics Faculty Publications

We report precision determinations of the beam-normal single spin asymmetries (An) in the elastic scattering of 0.95 and 2.18 GeV electrons off 12C, 40Ca, 48Ca, and 208Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of An for 40Ca and 48Ca are found to be similar to that of 12C, consistent with expectations and thus demonstrating the validity of theoretical calculations for nuclei with Z ≤ 20. We also report An for 208Pb at two …


Emittance In Nonlinear Thomson Scattering, Erik Johnson, Elizabeth Breen, Geoffrey A. Krafft, Balša Terzić Jan 2022

Emittance In Nonlinear Thomson Scattering, Erik Johnson, Elizabeth Breen, Geoffrey A. Krafft, Balša Terzić

Physics Faculty Publications

Inverse Compton scattering sources are finding increasing use as intense sources of high-energy photons. When operated at high field strength, ponderomotive detuning of the scattered emission can lead to decreased source performance. Up to now, the calculations of spectra for such nonlinear Thomson scattering have been done assuming a perfectly aligned electron interacts with the incident laser beam and several authors have investigated whether pondermotive detuning may be mitigated or cured by suitable incident laser chirping prescriptions. In order to determine if these chirping prescriptions are suitable in real beams with nonzero emittance, it is necessary to include misaligned boundary …


Magnetic Structure Of Few-Nucleon Systems At High Momentum Transfers In A Chiral Effective Field Theory Approach, A. Gnech, R. Schiavilla Jan 2022

Magnetic Structure Of Few-Nucleon Systems At High Momentum Transfers In A Chiral Effective Field Theory Approach, A. Gnech, R. Schiavilla

Physics Faculty Publications

The five low-energy constants (LECs) in the electromagnetic current derived in chiral effective field theory (χEFT) up to one loop are determined by a simultaneous fit to the A=2−3 nuclei magnetic moments and to the deuteron magnetic form factor and threshold electrodisintegration at backward angles over a wide range of momentum transfers. The resulting parametrization then yields predictions for the 3He/3H magnetic form factors in excellent accord with the experimental values for momentum transfers ranging up to ≈0.8 GeV/c, beyond the expected regime of validity of the χEFT approach. The calculations are based on last-generation two-nucleon interactions …


Polarized Structure Function ΣLt' From 𝜋⁰P Electroproduction Data In The Resonance Region At 0.2 Gev² < Q² < 1.0 Gev², E. L. Isupov, V. D. Burkert, A. A. Golubenko, K. Joo, N. S. Markov, V. I. Mokeev, L. C. Smith, N. Zachariou, W. R. Armstrong, H. Atac, Et Al Jan 2022

Polarized Structure Function ΣLt' From 𝜋⁰P Electroproduction Data In The Resonance Region At 0.2 Gev² < Q² < 1.0 Gev², E. L. Isupov, V. D. Burkert, A. A. Golubenko, K. Joo, N. S. Markov, V. I. Mokeev, L. C. Smith, N. Zachariou, W. R. Armstrong, H. Atac, Et Al

Physics Faculty Publications

The first results on the σLT′ structure function in exclusive π0p electroproduction at invariant masses of the final state of 1.5GeV < W < 1.8 GeV and in the range of photon virtualities 0.4 GeV2 < Q2 < 1.0 GeV2 were obtained from data on beam spin asymmetries and differential cross sections measured with the CLAS detector at Jefferson Lab. The Legendre moments determined from the σLT′ structure function have demonstrated sensitivity to the contributions from the nucleon resonances in the second and third resonance regions. These new data on the beam spin asymmetries in π0p electroproduction extend the opportunities for the extraction of the nucleon resonance electro-excitation amplitudes in …


Study Of ⋀N Fsi With ⋀ Quasi-Free Productions On The ³H (E, E'K⁺) X Reaction At Jlab, K. Itabashi, K. N. Suzuki, B. Pandey, K. Okuyama, T. Gogami, S. Nagao, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Milhovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng Jan 2022

Study Of ⋀N Fsi With ⋀ Quasi-Free Productions On The ³H (E, E'K⁺) X Reaction At Jlab, K. Itabashi, K. N. Suzuki, B. Pandey, K. Okuyama, T. Gogami, S. Nagao, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Milhovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng

Physics Faculty Publications

An nnΛ is a neutral baryon system with no charge. The study of the pure Λ-neutron system such as nnΛ gives us information on the Λn interaction. The nnΛ search experiment (E12-17-003) was performed at JLab Hall A in 2018. In this article, the Λn FSI was investigated by a shape analysis of the 3H(e, e′K+)X missing mass spectrum, and a preliminary result for the Λn FSI study is given.


𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov Jan 2022

𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov

Physics Faculty Publications

The LuOH+ cation is a promising system to search for manifestations of time reversal and spatial parity violation effects. Such effects in LuOH+ induced by the electron electric dipole moment eEDM and the scalar-pseudoscalar interaction of the nucleus with electrons, characterized by ks constant, in LuOH+ are studied. The enhancement factors, polarization in the external electric field, hyperfine interaction, and rovibrational structure are calculated. The study is required for the experiment preparation and extraction of the eEDM and ks values from experimental data.


Magnetic Flux Expulsion In Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium, Bashu D. Khanal, S. Balachandran, S. Chetri, P. J. Lee, P. Dhakal Jan 2022

Magnetic Flux Expulsion In Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium, Bashu D. Khanal, S. Balachandran, S. Chetri, P. J. Lee, P. Dhakal

Physics Faculty Publications

Trapped residual magnetic field during the cooldown of superconducting radio frequency (SRF) cavities is one of the primary source of RF residual losses leading to lower quality factor. Historically, SRF cavities have been fabricated from high purity fine grain niobium with grain size ~50 - 100 μm as well as large grain with grain size of the order of few centimeters. Non-uniform recrystallization of fine-grain Nb cavities after the post fabrication heat treatment leads to higher flux trapping during cooldown, hence the lower quality factor. We fabricated two 1.3 GHz single cell cavities from cold-worked niobium from different vendors and …


Solutions For Fermi Questions, January 2022: Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein Jan 2022

Solutions For Fermi Questions, January 2022: Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein

Physics Faculty Publications

No abstract provided.


Experimental Study Of The Behavior Of The Bjorken Sum At Very Low Q², A. Deur, J. P. Chen, S. E. Kuhn, C. Peng, M. Ripani, V. Sulkosky, K. Adhikari, M. Battaglieri, V. D. Burkert, G. D. Cates, R. De Vita, G.E. Dodge, L. El Fassi, F. Garibaldi, H. Kang, M. Osipenko, J. T. Singh, K. Slifer, J. Zhang, X. Zheng Jan 2022

Experimental Study Of The Behavior Of The Bjorken Sum At Very Low Q², A. Deur, J. P. Chen, S. E. Kuhn, C. Peng, M. Ripani, V. Sulkosky, K. Adhikari, M. Battaglieri, V. D. Burkert, G. D. Cates, R. De Vita, G.E. Dodge, L. El Fassi, F. Garibaldi, H. Kang, M. Osipenko, J. T. Singh, K. Slifer, J. Zhang, X. Zheng

Physics Faculty Publications

We present new data on the Bjorken sum -Γ p-n1 (Q2) at 4-momentum transfer 0.021 ≤ Q2 ≤ 0.496 GeV2. The data were obtained in two experiments performed at Jefferson Lab: EG4 on polarized protons and deuterons, and E97110 on polarized 3He from which neutron data were extracted. The data cover the domain where chiral effective field theory (χEFT), the leading effective theory of the Strong Force at large distances, is expected to be applicable. We find that our data and the predictions from χEFT are only in marginal …


Transversity Parton Distribution Function Of The Nucleon Using The Pseudodistribution Approach, Colin Egerer, Christos Kallidonis, Joseph Karpie, Nikhil Karthik, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2022

Transversity Parton Distribution Function Of The Nucleon Using The Pseudodistribution Approach, Colin Egerer, Christos Kallidonis, Joseph Karpie, Nikhil Karthik, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

We present a determination of the nonsinglet transversity parton distribution function (PDF) of the nucleon, normalized with respect to the tensor charge at μ2 ¼ 2 GeV2 from lattice quantum chromodynamics. We apply the pseudodistribution approach, using a gauge ensemble with a lattice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract the transversity PDF from the analysis of the short-distance behavior of the Ioffe-time pseudodistribution using the leading-twist nextto-leading order (NLO) matching coefficients calculated for transversity. We reconstruct the x-dependence of the transversity PDF through an expansion in a …


Beam-Spin Asymmetry Σ For Σ⁻ Hyperon Photoproduction Off The Neutron, N. Zachariou, E. Munevar, B. L. Berman, P. Bydžovský, A. Cieplý, G. Feldman, Y. Ilieva, P. Nadel-Turonski, D. Skoupil, A. V. Sarantsev, D. P. Watts B, M. J. Amaryan, G. Angelini, W. R. Armstrong, H. Atac, H. Avakian, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, Et Al. Jan 2022

Beam-Spin Asymmetry Σ For Σ⁻ Hyperon Photoproduction Off The Neutron, N. Zachariou, E. Munevar, B. L. Berman, P. Bydžovský, A. Cieplý, G. Feldman, Y. Ilieva, P. Nadel-Turonski, D. Skoupil, A. V. Sarantsev, D. P. Watts B, M. J. Amaryan, G. Angelini, W. R. Armstrong, H. Atac, H. Avakian, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, Et Al.

Physics Faculty Publications

We report a new measurement of the beam-spin asymmetry, Σ, for the 𝛾n → K+Σ reaction using quasi-free neutrons in a liquid-deuterium target. The new dataset includes data at previously unmeasured photon energy and angular ranges, thereby providing new constraints on partial wave analyses used to extract properties of the excited nucleon states. The experimental data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall B of the Thomas Jefferson National Accelerator Facility (JLab). The CLAS detector measured reaction products from a liquid-deuterium target produced by an energy-tagged, linearly polarised photon beam with …


Probing For High-Momentum Protons In ⁴He Via The ⁴He (E, E'P) X Reactions, Jefferson Lab Hall A Collaboration, S. Iqbal, F. Benmokhtar, M. Ivanov, L. B. Weinstein, X. Zheng, P. Zhu, R. Zielinski, Et Al Jan 2022

Probing For High-Momentum Protons In ⁴He Via The ⁴He (E, E'P) X Reactions, Jefferson Lab Hall A Collaboration, S. Iqbal, F. Benmokhtar, M. Ivanov, L. B. Weinstein, X. Zheng, P. Zhu, R. Zielinski, Et Al

Physics Faculty Publications

Experimental cross sections for the 4He(e,e′p) X reactions in the missing energy range from 0.017 to 0.022 GeV and up to a missing momentum of 0.632 GeV/c at xB = 1.24 and Q2 = 2 (GeV/c)2 are reported. The data are compared to relativistic distorted-wave impulse approximation calculations for the 4He(e,e′p)3H channel. Significantly more events are observed for pm0.45 GeV/c than are predicted by the theoretical model, and striking fluctuations in the ratio of data to the theoretical model around pm = 0.3GeV/c are possible signals of initial-state multinucleon …


Rapidity Evolution Of Tmds With Running Coupling, Ian Balitsky, Giovanni A. Chirilli Jan 2022

Rapidity Evolution Of Tmds With Running Coupling, Ian Balitsky, Giovanni A. Chirilli

Physics Faculty Publications

The scale of a coupling constant for rapidity-only evolution of transverse-momentum dependent (TMD) operators in the Sudakov kinematic region is calculated using the Brodsky-Lepage-Mackenzie optimal scale setting [S. J. Brodsky et al., Phys. Rev. D 28, 228 (1983).]. The effective argument of a coupling constant is halfway in the logarithmical scale between the transverse momentum and energy of TMD distribution. The resulting rapidity-only evolution equation is solved for quark and gluon TMDs.


Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang Jan 2022

Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang

Physics Faculty Publications

The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 µA is relatively low compared to the maximum CEBAF current of approximately 180 µA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the …


Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich Jan 2022

Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich

Physics Faculty Publications

Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. When we cool these cavities at cryogenic temperature ~2 – 4 K, we can get optimum performance by minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the leading sources of residual losses in SRF cavities is trapped magnetic flux. The flux trapping mechanism depends on different surface preparations and cool-down conditions. We have designed, developed, and commissioned a combined magnetic (B) and temperature (T) mapping system using anisotropic magneto-resistance (AMR) sensors and carbon resistors …


Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen Jan 2022

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen

Physics Faculty Publications

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without …


Study Of The Λ/Σ⁰ Electroproduction In The Low-Q² Region At Jlab, K. Okuyama, K. Itabashi, S. Nagao, S. N. Nakamura, K. N. Suzuki, T. Gogami, B. Pandey, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.- P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, Florian Hauenstein, D. W. Higinbotham, Charles E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng Jan 2022

Study Of The Λ/Σ⁰ Electroproduction In The Low-Q² Region At Jlab, K. Okuyama, K. Itabashi, S. Nagao, S. N. Nakamura, K. N. Suzuki, T. Gogami, B. Pandey, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.- P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, Florian Hauenstein, D. W. Higinbotham, Charles E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng

Physics Faculty Publications

We performed an experiment using tritium and hydrogen cryogenic gas targets at Thomas Jefferson National Accelerator Facility (JLab) in 2018 (E12-17-003)[1, 2]. In this article, we discuss the Λ/Σ0 hyperon electroproduction from hydrogen target. Elementary Λ/Σ0 hyperon production processes are important not only for an absolute mass scale calibration in our experiment, but also for the study of the electroproduction mechanisms themselves. In this article, we reported the results of the differential cross section for the p(e, e’K+)Λ/Σ0 reaction at Q2 ∼ 0.5 (GeV/c)2.


Athena Detector Proposal — A Totally Hermetic Electron Nucleus Apparatus Proposed For Ip6 At The Electron-Ion Collider, J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N. J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J. R. Arrington, A. Asaturyan, E. C. Aschenauer, K. Augsten, S. Aune, M. Żurek, Et Al. Jan 2022

Athena Detector Proposal — A Totally Hermetic Electron Nucleus Apparatus Proposed For Ip6 At The Electron-Ion Collider, J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N. J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J. R. Arrington, A. Asaturyan, E. C. Aschenauer, K. Augsten, S. Aune, M. Żurek, Et Al.

Physics Faculty Publications

ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges.


Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng Jan 2022

Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng

Physics Faculty Publications

We investigate a correlation between the dark matter content of elliptical galaxies and their ellipticity ϵ that was initially reported in 2014. We use new determinations of dark matter and ellipticities that are posterior to that time. Our data set consists of 237 elliptical galaxies passing a strict set of criteria that selects a homogeneous sample of typical elliptical galaxies. We find a relation between the mass-to-light ratio and ellipticity ϵ that is well fitted by M/L = (14.1 ± 5.4)ϵ, which agrees with the result reported in 2014. Our analysis includes 135 galaxies that were not in …


Preliminary Results From Magnetic Field Scanning System For A Single-Cell Niobium Cavity, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich Jan 2022

Preliminary Results From Magnetic Field Scanning System For A Single-Cell Niobium Cavity, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich

Physics Faculty Publications

One of the building blocks of modern particle accelerators is superconducting radiofrequency (SRF) cavities. Niobium is the material of choice to build such cavities, which operate at liquid helium temperature (2 - 4 K) and have some of the highest quality factors found in Nature. There are several sources of residual losses, one of them is trapped magnetic flux, which limits the quality factor in SRF cavities. The flux trapping mechanism depends on different niobium surface preparations and cool-down conditions. Suitable diagnostic tools are not yet available to study the effects of such conditions on magnetic flux trapping. A magnetic …


Measurement Of Spin Density Matrix Elements In Λ(1520) Photoproduction At 8.2-8.8 Gev, Shankar Adhikari, C. S. Akondi, M. Albrecht, Moskov Amaryan, Tyler Viducic, B. Zihlmann, Et Al., Gluex Collaboration, D. I. Glazier, V. Mathieu Jan 2022

Measurement Of Spin Density Matrix Elements In Λ(1520) Photoproduction At 8.2-8.8 Gev, Shankar Adhikari, C. S. Akondi, M. Albrecht, Moskov Amaryan, Tyler Viducic, B. Zihlmann, Et Al., Gluex Collaboration, D. I. Glazier, V. Mathieu

Physics Faculty Publications

We report on the measurement of spin density matrix elements of the Λ(1520) in the photoproduction reaction γp→Λ(1520)K+, via its subsequent decay to Kp. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Laboratory using a linearly polarized photon beam with Eγ = 8.2 GeV–8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, − (t − t0). We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are …


Spectroscopic Study Of A Possible Λ𝑛𝑛 Resonance And A Pair Of (E, E'K⁺) Reaction With A Tritium Target, Hall A Collaboration, B. Pandey, L. Tang, T. Gogami, Florian Hauenstein, Charles Hyde, Z. Ye, J. Zhang, X. Zheng, Et Al. Jan 2022

Spectroscopic Study Of A Possible Λ𝑛𝑛 Resonance And A Pair Of (E, E'K⁺) Reaction With A Tritium Target, Hall A Collaboration, B. Pandey, L. Tang, T. Gogami, Florian Hauenstein, Charles Hyde, Z. Ye, J. Zhang, X. Zheng, Et Al.

Physics Faculty Publications

A mass spectroscopy experiment with a pair of nearly identical high-resolution spectrometers and a tritium target was performed in Hall A at Jefferson Lab. Utilizing the (e,e′K+) reaction, enhancements, which may correspond to a possible Λnn resonance and a pair of ΣNN states, were observed with an energy resolution of about 1.21 MeV (σ), although greater statistics are needed to make definitive identifications. An experimentally measured Λnn state may provide a unique constraint in determining the Λn interaction, for which no scattering data exist. In addition, although bound A = 3 and 4 Σ hypernuclei have …


Effect Of Duration Of 120 °C Baking On The Performance On Superconducting Radio Frequency Niobium Cavities, B. D. Khanal, P. Dhakal Jan 2022

Effect Of Duration Of 120 °C Baking On The Performance On Superconducting Radio Frequency Niobium Cavities, B. D. Khanal, P. Dhakal

Physics Faculty Publications

Over the last decade much attention was given in increasing the quality factor of superconducting radio frequency (SRF) cavities by impurity doping. Prior to the era of doping, the final cavity processing technique to achieve the high accelerating gradient includes the "in situ" low temperature baking of SRF cavities at temperature ~ 120 °C for several hours. Here, we present the results of a series of measurements on 1.3 GHz TESLA shape single-cell cavities with successive low temperature baking at 120 °C up to 96 hours. The experimental data were analyzed with available theory of superconductivity to elucidate the effect …


Application Of Image Processing Programs In Color Analysis Of Wood Photodegradation, Gabriel Joseph D. Plata, Ramon M. Delos Santos Jan 2022

Application Of Image Processing Programs In Color Analysis Of Wood Photodegradation, Gabriel Joseph D. Plata, Ramon M. Delos Santos

Physics Faculty Publications

In general, polymer photodegradation is an important aspect of polymer science that is of great interest to chemistry, materials science, biology, and physics students who engage in this field of research. Wood consists of three main polymers, which makes it a good candidate for such photodegradation studies. Aside from structural changes based on chemical analysis, color change assessment can also be employed to check any extent of degradation on wood without the need for sophisticated analytical equipment. This study presents the application of two image processing programs in color analysis of wood photodegradation: ImageJ and Colormath library, which are Java-based …


High Resolution Diagnostic Tools For Superconducting Radio Frequency Cavities, I. Parajuli, G. Ciovati, J. R. Delayen Jan 2022

High Resolution Diagnostic Tools For Superconducting Radio Frequency Cavities, I. Parajuli, G. Ciovati, J. R. Delayen

Physics Faculty Publications

Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010–1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two high-resolution …


Observation Of Azimuth-Dependent Suppression Of Hadron Pairs In Electron Scattering Off Nuclei, S. J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks, M. J. Amaryan, W. R. Armstrong, H. Atac, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, K.-Th. Brinkmann, W. J. Briscoe, D. Bulumulla, V. D. Burkert, R. Capobianco, D. S. Carman, A. Celentano, V. Chesnokov, T. Chetry, G. Ciullo, P. L. Cole, M. Contalbrigo, G. Constantini, A. D' Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, S. Fegan, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, A. A. Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M. Guidal, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, R. Johnston, K. Joo, S. Joosten, D. Keller, A. Khanal, M. Khandaker, W. Kim, A. Kripko, V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, K. Livingston, I.J.D. Macgregor, D. Marchand, V. Mascagna, B. Mckinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. I. Mokeev, P. Moran, C. Munoz Camacho, K. Neupane, D. Nguyen, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, N. Pilleux, D. Pocanic, O. Pogorelko, M. Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, G. Rosner, F. Sabatié, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, X. Wei, R. Wishart, M. H. Wood, N. Zachariou, Z. W. Zhao, V. Ziegler, M. Zurek Jan 2022

Observation Of Azimuth-Dependent Suppression Of Hadron Pairs In Electron Scattering Off Nuclei, S. J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks, M. J. Amaryan, W. R. Armstrong, H. Atac, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, K.-Th. Brinkmann, W. J. Briscoe, D. Bulumulla, V. D. Burkert, R. Capobianco, D. S. Carman, A. Celentano, V. Chesnokov, T. Chetry, G. Ciullo, P. L. Cole, M. Contalbrigo, G. Constantini, A. D' Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, S. Fegan, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, A. A. Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M. Guidal, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, R. Johnston, K. Joo, S. Joosten, D. Keller, A. Khanal, M. Khandaker, W. Kim, A. Kripko, V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, K. Livingston, I.J.D. Macgregor, D. Marchand, V. Mascagna, B. Mckinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. I. Mokeev, P. Moran, C. Munoz Camacho, K. Neupane, D. Nguyen, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, N. Pilleux, D. Pocanic, O. Pogorelko, M. Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, G. Rosner, F. Sabatié, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, X. Wei, R. Wishart, M. H. Wood, N. Zachariou, Z. W. Zhao, V. Ziegler, M. Zurek

Physics Faculty Publications

We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets. Relative to deuterium, the nuclear yields of charged-pion pairs show a strong suppression for azimuthally opposite pairs, no suppression for azimuthally nearby pairs, and an enhancement of pairs with large invariant mass. These effects grow with increased nuclear size. The data are qualitatively described by the gibuu model, which suggests that hadrons form near the nuclear surface and undergo multiple scattering in nuclei. These results show …