Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Plasma-Laser Wakefield Acceleration, Jonathan Babu Dec 2021

Plasma-Laser Wakefield Acceleration, Jonathan Babu

Physics

Many texts detailing the derivations and science of Wakefield Acceleration are aimed at graduate and doctorate level scholars, and these may seem intimidating to new physics students. This paper is meant to be an introduction to the nature of plasmas, lasers, laser-plasma interactions, and Laser Wakefield Acceleration (LWFA), with sources given where extra detail may be required. I recognize that this paper is not meant to be an all-encompassing review on the nature of the topics, as these topics are complex and subject of entire textbooks. Instead, I aim to provide an introduction to these topics to a college-level scholar …


Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl Mar 2020

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl

Physics

To improve particle interaction in the future Electron-Ion Collider (EIC), we investigated different feedback implementations to control the accelerating voltage and examined the power and beam phase for each instance. Using MATLAB, we studied three feedback mechanisms: Direct, One Turn, and Feedforward. Enacting feedforward yielded the best performance. To minimize the klystron power consumption, we analyzed different Low-Level Radio Frequency (LLRF) parameters such as detuning. Combining theory and simulated results, we found the optimal detuning value that minimizes klystron power consumption.


Improvements For The T0c+ Geometry Of The Fast Interaction Trigger (Fit) Upgrade To Alice At The Cern Lhc, Noah Miller Jun 2017

Improvements For The T0c+ Geometry Of The Fast Interaction Trigger (Fit) Upgrade To Alice At The Cern Lhc, Noah Miller

Physics

The purpose of the ALICE experiment at CERN is to investigate the properties of the strongly interacting quark-gluon plasma formed in the high-energy collisions of lead nuclei in the CERN Large Hadron Collider. ALICE has been collecting data since 2009. The upcoming upgrade of the CERN LHC injectors during 2019-20 will boost the luminosity and the collision rate beyond the design parameters for several of the key ALICE detectors including the forward trigger detectors. The new Fast Interaction Trigger (FIT) will enable ALICE to discriminate beam-beam interactions with a 99% efficiency for the collisions generated by the LHC at a …


Spontaneous Parametric Down Conversion Of Photons Through Β-Barium Borate, Luke Horowitz May 2016

Spontaneous Parametric Down Conversion Of Photons Through Β-Barium Borate, Luke Horowitz

Physics

An apparatus for detecting pairs of entangled 405nm photons that have undergone Spontaneous Parametric Down Conversion through β-Barium Borate is described. By using avalanche photo-diodes to detect the low-intensity converted beam and a coincidence module to register coincident photons, it is possible to create an apparatus than can be used to perform quantum information experiments under a budget appropriate for an undergraduate physics lab.


Modeling The Sps Feedback And Feedforward Systems For Improved Performance, Jake Hargrove May 2016

Modeling The Sps Feedback And Feedforward Systems For Improved Performance, Jake Hargrove

Physics

The Super Proton Synchrotron (SPS) is the last link in the chain of accelerators providing protons to the Large Hadron Collider (LHC). The SPS is currently the limiting factor on the maximum number of protons and thus collisions in the LHC. The SPS upgrade is under way to expand the discovery potential of the LHC. The accelerating system — Radio Frequency (RF) — is being improved. Models of the SPS RF feedback systems were developed. These models could assist with design choices, evaluating the upgraded system performance, and anticipate limitations and issues.


Simulations Of Hl-Lhc Crab Cavity Noise Using Headtail, Stanley Steeper Sep 2015

Simulations Of Hl-Lhc Crab Cavity Noise Using Headtail, Stanley Steeper

Physics

The High Luminosity Large Hadron Collider (Hi-Lumi LHC) upgrade -- scheduled to be completed by 2025 -- will improve the existing LHC in many ways. One such upgrade is the addition of Crab Cavities (CCs). The CCs are resonant structures that provide strong transverse kicks to the circulating clouds of particles around each interaction region. As such, the CCs result in a head-on collision of the clouds and a large increase in event rate, leading to reduced statistical uncertainty and potentially faster discoveries. However, the CC field will be modulated by phase and amplitude noise which can have detrimental effects …


Jet Measurements With Proton-Proton Collisions At 7 Tev In Alice, Kevin Thompson Jun 2014

Jet Measurements With Proton-Proton Collisions At 7 Tev In Alice, Kevin Thompson

Physics

The CERN Large Hadron Collider (LHC) is the world's largest and most complex particle accelerator, with several experiments making discoveries at the frontiers of particle and nuclear physics. The ALICE experiment at the LHC explores the nature of the early Universe through relativistic nuclear collisions. The properties of the "quark-gluon" plasma of subatomic particles created can be investigated with particle jets, which are produced in the earliest moments of the collision. This paper will provide an overview of the analysis of particle jets in 7 TeV proton-proton collisions, which forms the baseline for understanding jet production in collisions of heavy …


Analysis Of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor, Robert Campbell Sep 2012

Analysis Of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor, Robert Campbell

Physics

In the past year, a double slit interferometer was installed to measure the horizontal beam size in the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) at Cornell University in Ithaca, NY. To better understand the systematics of this device, a replica of the CesrTA instrument was assembled at California Polytechnic State University San Luis Obispo. From the prototype, it was found that the device will produce a calculated beam size that agrees with measurements as long as it is optimized with the proper double slits for a small range of beam sizes.


Gaussian Beam Steering On A Target Plane Via High Speed Orthogonal Mirror-Mounted Galvanometers, Keith Gresiak Jun 2012

Gaussian Beam Steering On A Target Plane Via High Speed Orthogonal Mirror-Mounted Galvanometers, Keith Gresiak

Physics

No abstract provided.


Laser-Induced Breakdown Spectroscopy, Connor Drake Jun 2011

Laser-Induced Breakdown Spectroscopy, Connor Drake

Physics

The goal of this work is to use a Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Laser, spectrometer, and computer to create a Laser Induced Breakdown Spectroscopy (LIBS) system. LIBS utilizes a focused, high-powered, pulsed laser whose peak electric field ionizes materials at the beam focal point, creating localized plasma. The plasma state includes broken molecular bonds, atom/electron-ionization, and excited electrons, which on the macroscopic level is a loud “snap” and a bright spark. In this project, a fiber optic cable is used to capture light emitted from the spark, and direct it into a spectrometer which tallies the number of photons …


Could Alice Find The Elusive Higgs?, Tyler Williams Dec 2010

Could Alice Find The Elusive Higgs?, Tyler Williams

Physics

The Higgs boson is the theoretical mechanism for creating the mass of particles. Although it has never been seen, the CERN Large Hadron Collider (LHC) is the most likely place for it to be created in the laboratory. The ALICE (A Large Ion Collider Experiment) detector is focused on the study of heavy ion collisions at the LHC and was not designed to find the Higgs boson; however, there is a chance it could be detected there. Although the luminosity (collision rate) for PbPb collisions is much lower than that for pp collisions, PbPb collisions have a higher probability to …


Bottom Quark Detection With The Electromagnetic Calorimeter At Alice, Christopher Ryan Brown Aug 2010

Bottom Quark Detection With The Electromagnetic Calorimeter At Alice, Christopher Ryan Brown

Physics

Bottom quarks are one of the easiest ways to observe quark flow in a quark gluon plasma. For this reason, it is advantageous in a detector to have superb capabilities at detecting bottom quarks through their decay products and interactions. This paper will provide an overview of bottom quark behavior in a quark gluon plasma, as well as methods used to detect this behavior. Once this has been established, an overview of the heavy ion physics at the Large Hadron Collider (LHC), and particularly A Large Ion Collider Experiment (ALICE), will be discussed. It will then be argued that the …


Investigation Of Track-Cluster Matching Vs Track-Cell Matching In The Alice Detector At Cern, Kevin Coulombe Jun 2010

Investigation Of Track-Cluster Matching Vs Track-Cell Matching In The Alice Detector At Cern, Kevin Coulombe

Physics

The ALICE (A Large Ion Collider Experiment) Experiment is a detector that is one of four stationed at the CERN Large Hadron Collider. The goal of ALICE is to investigate the properties of the quark-gluon plasma, a new form of matter which only existed during the first microsecond of the Universe. ALICE measures the aftermath of the collision of two lead ions. Some information detected is the trajectory of the particles traveling through the tracking detectors and energy deposited in the calorimeters. Both the tracks and energy are required to determine the identities of the various particles as they travel …