Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Access Theses & Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 149

Full-Text Articles in Physics

Effect Of Self-Interaction Correction On Molecular Polarizabilities And Core Ionization Energies, Sharmin Akter Dec 2023

Effect Of Self-Interaction Correction On Molecular Polarizabilities And Core Ionization Energies, Sharmin Akter

Open Access Theses & Dissertations

Density Functional Theory (DFT) is one of the most successful and popular computational Quantum Mechanical approaches to understanding materials. DFT allows the prediction of material properties from the electron density. Although in principle, density functional theory is exact, it, however, relies on approximate functional for exchange-correlation energy. Due to the approximate nature of the exchange-correlation functional, the self-Coulomb energy of the electrons is not exactly canceled out by the self-exchange, leading to the spurious self-interaction error (SIE). Due to this error, the potential shows incorrect behavior which leads to errors in calculated properties such as ionization energies, electron affinities, polarizabilities, …


Co2-Dependent Nanoscale Organization In Bulk And Interfacial Carbon Dioxide Capture Liquids Elucidated Using X-Ray Scattering, Daniel Eduardo Moran Dec 2023

Co2-Dependent Nanoscale Organization In Bulk And Interfacial Carbon Dioxide Capture Liquids Elucidated Using X-Ray Scattering, Daniel Eduardo Moran

Open Access Theses & Dissertations

The pressing need to control carbon dioxide emissions has propelled extensive research efforts employing a variety of approaches across the globe. In flue-gas recovery of CO2, the water-lean amine-based solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA), has shown exceptional performance. Recent studies show that 2-EEMPA exhibits intermediate-range order (IRO), beyond the first nearest neighbor length scale, consisting of tetrameric clusters. In view of the need to find solutions for direct air capture (DAC) of CO2, this system may represent a critical linkage in a DAC strategy, yet structural insights on EEMPA's behavior at solid surfaces are still lacking. To this end, we applied the …


Intercomparison Of Planetary Boundary Layer Over El Paso-Juarez Region Using Vaisala Ceilometers, Vianey Arvilla Dec 2023

Intercomparison Of Planetary Boundary Layer Over El Paso-Juarez Region Using Vaisala Ceilometers, Vianey Arvilla

Open Access Theses & Dissertations

Vaisala ceilometers (models CL 31 and Cl 51) were used to monitor and study the planetary boundary layer (PBL). There were four ceilometer stations that we connected to create the Paso del Norte ceilometer network. These stations are located at: UTEP, Socorro, Ivanhoe, and Juarez. This network has been automatized and its hourly averaged mean boundary layer height data is being downloaded into a computer accessible to TCEQ (Texas Commission on Environmental Quality) and to the public. In this study, data from each ceilometer was used to produce scatter plots. These scatter plots were analyzed to obtain the PBL heights …


Viability Of Magnetic Nanoparticles For Magnetic Hyperthermia Cancer Therapy, Marcos Adrian Garcia Dec 2023

Viability Of Magnetic Nanoparticles For Magnetic Hyperthermia Cancer Therapy, Marcos Adrian Garcia

Open Access Theses & Dissertations

Over the last few decades magnetic nanoparticles have gained an extraordinary amount of attention in the science community. Their versatile use in many different research areas such as medicine, engineering and technology and many other areas has made them a popular subject. In this thesis, the synthesis of different systems of magnetic nanoparticles will be explored along with the potential use of the MNP's as viable candidates for Magnetic Hyperthermia Cancer Therapy. With values of over 200 emu/g for Iron-Silver magnetic nanoparticles with particle sizes ranging from 30-70nm and their heating properties under an AC magnetic field. As well of …


A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez Aug 2023

A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez

Open Access Theses & Dissertations

Radical ion pairs (RIPs) have been used to demonstrate quantum teleportation in molecular systems for applications in quantum information science. Covalent organic donor-acceptor (D-A) molecules can produce RIPs through photo-induced charge transfer and an additional radical (R) molecule makes quantum teleportation possible. We present the electronic structure and analyze charge transfer excited states of a recently studied [1] D-A-R molecular system using density functional theory. The distances between donor-acceptor and donor-radical are about 12.9 \AA $\,$ and 21.9 \AA, respectively. The excitation energies are calculated using the perturbative delta-SCF method and agree with other conventional excited-state methods and experimental reference …


Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson Aug 2023

Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson

Open Access Theses & Dissertations

Uranium trioxide (UO3) is a stable uranium oxide found throughout the nuclear fuel cycle. The γ-UO3 phase is of particular interest as the most stable at ambient conditions. As such, the γ-UO3 structure was selected for a theoretical investigation into the incorporation of metal dopants for nuclear intentional forensics applications. The two lattice types of this phase, tetragonal (I41/amd) and orthorhombic (Fddd), were investigated and found to be energetically identical, and as such the smaller tetragonal structure was selected for doping. Three transition metal dopants (Cr, Fe, and Ni) were incorporated into the structure interstitially and substitutionally at a total …


Analysis Of The Electrostatic Characteristics Of The Zika Virus Capsid Using Computational Methods, Cassandra Guadalupe Del Rio De Avila May 2023

Analysis Of The Electrostatic Characteristics Of The Zika Virus Capsid Using Computational Methods, Cassandra Guadalupe Del Rio De Avila

Open Access Theses & Dissertations

Zika virus (ZIKV) is a flavivirus that is usually transmitted through the bite of infected mosquitoes. This virus can cause a variety of neurological disorders, the most common being Guillain-Barré syndrome in adults. Moreover, it is of great concern in pregnant women, since can cause deformities in the brain and other organs of newborns.Studying the structural characteristics of the virus during its mature and infectious phase can provide crucial information on the mechanisms by which it enters and replicates within host cells, as well as its evolution, transmission, and interaction with other living organisms. The symmetric pattern present in the …


Development Of Multi-Configuration Methods On Density Functional Theory Orbitals And Application On The Study Of Dimers, Jose Gustavo Bravo Flores May 2023

Development Of Multi-Configuration Methods On Density Functional Theory Orbitals And Application On The Study Of Dimers, Jose Gustavo Bravo Flores

Open Access Theses & Dissertations

The configuration interaction (CI) methods is an exact method to solve the non relativistic Schrodinger equation, describing the wave function as a linear combination of Slater determinants. Because the computation time grows factorially as the number of electrons, CI is mostly used for relatively small systems. Density functional theory (DFT) rose as one of the most used methods for computational quantum chemistry in the last 30 years. DFT can describe a system's properties with the electron density, which only depends of of three coordinates. Due to its low computational costs it allows one to study bigger systems than CI, however …


Microscopic And Spectroscopic Analysis Of Nordihydroguaiaretic Acid Effect On Astrocytes, Lizbeth Vanessa Martinez Lopez May 2023

Microscopic And Spectroscopic Analysis Of Nordihydroguaiaretic Acid Effect On Astrocytes, Lizbeth Vanessa Martinez Lopez

Open Access Theses & Dissertations

Astrocytes, one of the most abundant cell components in the central nervous system (CNS), have been a research target in the last few years. Several studies have found that astrocytes are not only mere supporters of neurons but also of essential processes developed in the CNS. Their malfunction could induce neurodegenerative diseases and brain tumors. Thus, further understanding of astrocytes and their role is of high interest to develop possible new treatments and methods of disease diagnosis, especially in brain cancer. The plant Larrea tridentata (La Gobernadora in Mexico or Creosote bush in the United States) is known to have …


Classification Of Nuclear Pastas Through Alpha Shapes Model, Daniela Ramirez Chavez Dec 2022

Classification Of Nuclear Pastas Through Alpha Shapes Model, Daniela Ramirez Chavez

Open Access Theses & Dissertations

The nuclear pasta is important because is an astromaterial with incredible strength that may be a source for gravitational waves, which observe from the rotation of neutron stars. The characterization of the pasta is vital because the nuclear phases have transport properties - compressibility, neutrino opacity, thermal conductivity, and electrical conductivity - associated with their shape for which neutron stars may be sensitive. These properties could interpret observations of supernova neutrinos, magnetic field decay, and crust cooling of accreting neutron stars. Here, we study the nuclear pasta using alpha shapes to achieve a phase characterization with the Minkowski functionals (area, …


Spectroscopic Study Of Bi5ti3feo15 Aurivillius Compound For Multifunctional Applications, Mariana Castellanos Dec 2022

Spectroscopic Study Of Bi5ti3feo15 Aurivillius Compound For Multifunctional Applications, Mariana Castellanos

Open Access Theses & Dissertations

No abstract provided.


Generation Of Phase Transitions Boundaries Via Convolutional Neural Networks, Christopher Alexis Ibarra Dec 2022

Generation Of Phase Transitions Boundaries Via Convolutional Neural Networks, Christopher Alexis Ibarra

Open Access Theses & Dissertations

Accurate mapping of phase transitions boundaries is crucial in accurately modeling the equation of state of materials. The phase transitions can be structural (solid-solid) driven by temperature or pressure or a phase change like melting which defines the solid-liquid melt line. There exist many computational methods for evaluating the phase diagram at a particular point in temperature (T) and pressure (P). Most of these methods involve evaluation of a single (P,T) point at a time. The present work partially automates the search for phase boundaries lines utilizing a machine learning method based on convolutional neural networks and an efficient search …


Application Of Flo-Sic To F-Electron Systems: Sixth Row Elements And Ligated Molecules, Alexander Irun Johnson Dec 2022

Application Of Flo-Sic To F-Electron Systems: Sixth Row Elements And Ligated Molecules, Alexander Irun Johnson

Open Access Theses & Dissertations

Density functional theory - the most widely used theoretical method to study atoms,molecules, and solids - suffers from the well-known self-interaction error. A solution to the problem was suggested by Perdew and Zunger [1], who showed the self-interaction error can be removed with self-interaction correction. In 2014, Pederson showed a unitary transformation can be performed on the Kohn-Sham orbitals to generate Fermi-Löwdin orbitals which improve atomization energies, and avoid the computational costs of solving the localization equations.[2] This method is known as the Fermi-Löwdin Orbital Self-Interaction Correction (FLO-SIC). Until now, the FLO-SIC methodology has been used for atoms not containing …


Modulation Of Non-Diffracting Hermite Gaussian Beams And Nonlinear Optical Microscopy For Nanoscale Sulfur Imaging, Gilberto Navarro Dec 2022

Modulation Of Non-Diffracting Hermite Gaussian Beams And Nonlinear Optical Microscopy For Nanoscale Sulfur Imaging, Gilberto Navarro

Open Access Theses & Dissertations

Hermite Gaussian beams are the solutions of the scalar paraxial wave equation in Cartesian coordinates. A method was developed to modulate the intensity profile of non-diffracting Hermite Gaussian (HG) beams. The original HG beamâ??s intensity profile consists of high intense corner lobes and low intense central lobes which is not ideal for structured illumination in light-field microscopy. The modulated HG beams were generated by multiplying the original HGâ??s beam envelope by a super-Gaussian envelope to modify the intensity profile to attain equal intensity lobes. The propagation of the original HG beam and modulated HG beam were compared to determine that …


Two-Step Single Qubit Gates For Superconducting Qubits, Edward Takyi Dec 2022

Two-Step Single Qubit Gates For Superconducting Qubits, Edward Takyi

Open Access Theses & Dissertations

Why quantum information processing? Contemporary manipulation and transmission of information is executed through physical machines (computers, routers, scanners, etc.) in which Classical Mechanics is used to describe the embodiment and transformation of information. However, the physical theory of the world is not Classical Mechanics. And so, there is no reason to suppose that machines following the laws of Classical Mechanics would have the same computational power like quantum machines. Quantum computers would break the rules of classical computers and they would be able solve problems that are intractable on conventional supercomputers.

In order to fabricate quantum computers and make significant …


Magnetic Structures Of Sawtooth Olivines Mn2six 4 (X = S, Se) Determined Through Neutron Powder Diffraction, Melaku Sisay Tafere Dec 2022

Magnetic Structures Of Sawtooth Olivines Mn2six 4 (X = S, Se) Determined Through Neutron Powder Diffraction, Melaku Sisay Tafere

Open Access Theses & Dissertations

In olivine chalcogenide Mn2SiX 4 (X = S, Se) compounds, the Mn lattice produces a sawtooth, which is of critical significance in magnetism due to the potential for manifesting at bands in the magnon spectrum, a crucial component in magnonics. The compounds Mn2SiS4 and Mn2SiSe4 in Mn2SiX 4 family undergo antiferromagnetic phase transitions at T â?? 85 K and â?? 66 K, respectively, as determined from the specific heat, Cp(T). The average and local crystal structuresare determined using synchrotron X-ray, neutron diffraction, and X-ray total scattering data followed by Rietveld and pair distribution function (PDF) analysis. It is found from …


Oil Particle Analysis Using Machine Learning And Holography Imaging, Daniel Cruz Dec 2022

Oil Particle Analysis Using Machine Learning And Holography Imaging, Daniel Cruz

Open Access Theses & Dissertations

Holographic cameras show potential as a sensor to monitor oil spills. Holographic cameras record the light interference from particles in a volume of space, producing an image called a hologram. Processing these holograms is known as hologram reconstruction. It produces a representation of particles located in three-dimensional space. These cameras can record precise shapes and sizes of particles in a volume of water. However, it is very time-consuming and resource-intensive to process the images. Most algorithms that perform particle analysis require the hologram reconstruction step. The well-documented hybrid method is one such algorithm. Machine learning is one possible technique that …


Phonon Dispersions Of Nonmagnetic Bcc Iron At High Pressures From Ab Initio Molecular Dynamics And Harmonic Ensemble Lattice Dynamics, Valeria Itzel Arteaga Muniz Aug 2022

Phonon Dispersions Of Nonmagnetic Bcc Iron At High Pressures From Ab Initio Molecular Dynamics And Harmonic Ensemble Lattice Dynamics, Valeria Itzel Arteaga Muniz

Open Access Theses & Dissertations

Numerous computational and experimental studies on the crystal structure of metals nearthe melt line, indicate the body-centered cubic (bcc) structure can be favored over other crystal phases at lower temperatures [1]-[4] and even in cases in which other crystal structures are thermodynamically more stable, bcc may nucleate first from the melt, at rapid cooling rates [5]. Iron (Fe) is a polymorph metal, with a bcc ferromagnetic structure at ambient conditions. Even though the phase diagram of Fe is well known at relatively low pressures, there is currently no consensus on the crystal structure of Fe below the melt line at …


Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido Aug 2022

Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido

Open Access Theses & Dissertations

Classical molecular dynamics methods can accurately describe a broad set of many-atomssystems. Although more economical, the results given by this framework lack the precision capable of density functional theory (DFT). Therefore, the structural stability of the B2 phase of a body-centered-cubic iron-vanadium (FeV) alloy using DFT on the electronic structure level is analyzed to verify and further explain classical results obtained by our group in this same alloy. Using Quantum Espresso and Phonopy for the computational simulations, the plotted band structure, electronic density of states (eDOS), phonon dispersions, charge density, and Fermi surfaces for various compressed unit cells are presented. …


Optimization Of Quantum Circuits Using Spin Bus Multiqubit Gates For Quantum Dots, Miguel Gonzalo Rodriguez Aug 2022

Optimization Of Quantum Circuits Using Spin Bus Multiqubit Gates For Quantum Dots, Miguel Gonzalo Rodriguez

Open Access Theses & Dissertations

The current conventional method for designing quantum circuits is to employ a number of single- and two-qubit gates, which often necessitate a lengthy sequence, imposing severe constraints on quantum coherence and quantum circuit complexity. Coupling multiple spin qubits to a common spin chain can result in a generically multiqubit gate. It is demonstrated that the multiqubit gate can substantially reduce the depth of quantum circuits and establish multiqubit entanglement considerably more quickly.


Low-Lying Spin-Flip Excitonic States Of ����12��12 (��������)16 [��2��]4 Molecule (Mn12 − ����), Karma Dema May 2022

Low-Lying Spin-Flip Excitonic States Of ����12��12 (��������)16 [��2��]4 Molecule (Mn12 − ����), Karma Dema

Open Access Theses & Dissertations

Molecules and materials constructed from Mn atoms offer diverse assortments of geomet- rical and spin structures. The diversity of structures, in comparison with other transition metals, along with nature’s decision to use a Mn-based molecule to catalyze solar-driven water splitting and oxygen evolution, suggests that there is indeed something special about the location of Mn valence electrons, both energetically and geometrically, that endows Mn with its multifaceted behaviors that, in turn, provide such chemical, physical and mag- netic diversity. Based upon recent work on the Mn3 monomer and the Mn(taa) there is an expectation that Mn�� �� �� centers can …


Evolution Of The Magnetic Properties On Van Der Waals Layered Magnets Via Pressure And Proton Irradiation, Rubyann Olmos May 2022

Evolution Of The Magnetic Properties On Van Der Waals Layered Magnets Via Pressure And Proton Irradiation, Rubyann Olmos

Open Access Theses & Dissertations

Probing the magnetism in quasi two-dimensional materials has the potential in driving their properties towards future use in spin electronic based devices. Studying such layered magnets will enable the scientific community to uncover tunable exotic phases such as superconductivity, quantum paramagnetism, etc. This work examines the influence of two types of external perturbations, namely, the pressure and proton irradiation, on the magnetic properties of several compounds in the van der Waals crystal family.

Pressure has been found to induce structural and magnetic phase transitions in many of these materials. Using hydrostatic pressure as a disorderless approach to manipulate the interlayer …


Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram May 2022

Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram

Open Access Theses & Dissertations

A radiofrequency electrothermal thruster is designed and simulated to create a low ionization energy plasma from a neutral propellant using a radio-frequency power. With an asymmetrical surface area ratio between the grounded and powered electrode, ion-neutral charge exchange collisions occurring within the propellant result in propellant heating. The Electrothermal Plenum Thruster conducts this propellant heating in an annular plenum chamber in attempt to maximize propellant heating. A software called CFD-ACE+ is utilized to demonstrate the effects of an enhanced sheath from the asymmetrical power coupling arrangement. Two sets of simulations are run to understand how input variables affect the plasma …


Exploring Tunable Magnetization And High-Temperature Ferromagnetism In Ternary Transition Metal-Based Chalcogenides, Hector Iturriaga May 2022

Exploring Tunable Magnetization And High-Temperature Ferromagnetism In Ternary Transition Metal-Based Chalcogenides, Hector Iturriaga

Open Access Theses & Dissertations

The discovery of long-range magnetic ordering in ultrathin transition metal-based compounds shows great promise for the development of nanoscale memory and spintronic devices. Composed of cost-effective materials and boasting from strong chemical and thermal stability at low dimensions, van der Waals (vdW) ternary transition metal chalcogenide magnets like CrSiTe3 (CST), Fe2.7GeTe2 (FGT), and Mn3Si2Te6 (MST), provide not only possible energy solutions, but also a broad platform to explore the versatile magnetic character of this family of compounds. Although they have great potential, it has been found that their long-range magnetic ordering exists at temperatures far too low (the highest of …


Computational Study Of Grain Structure Evolution In Cdte/Cds Via Molecular Dynamics, Sharmin Abdullah Dec 2021

Computational Study Of Grain Structure Evolution In Cdte/Cds Via Molecular Dynamics, Sharmin Abdullah

Open Access Theses & Dissertations

Grain structure analysis plays an important role in the identification of grain boundary characteristics, which can affect the efficiency of Cadmium Telluride/Cadmium Sulfide (CdTe/CdS) solar cells since they can act as recombination centers for carriers. Computer simulations such as molecular dynamics (MD) can be a very convenient and cost- effective method of investigating the growth evolution and grain structure of materials. The recently reported and experimentally validated MD simulated growth of polycrystalline CdTe/CdS films shows that these materials mostly consist of zinc blende (ZB) and wurtzite (WZ) structures, along with highly disordered atoms. However, little information about the semiconductor compound …


Study Of Barrier Heights And Magnetic Property Using Locally Scaled And Perdew-Zunger Self-Interaction Methods, Prakash Mishra Dec 2021

Study Of Barrier Heights And Magnetic Property Using Locally Scaled And Perdew-Zunger Self-Interaction Methods, Prakash Mishra

Open Access Theses & Dissertations

Kohn-Sham density functional theory is a widely used method to estimate the ground state total energies and densities of interacting correlated electronic structures of atoms, molecules, clusters, solids, and liquids. In theory, exact solutions for these properties can be obtained by solving self-consistent one-electron Schrodinger equations based on density functionals for the energy.The practical application of KS DFT require approximation to the exchange-correlation energy functional. Many density functional approximations (DFAs) have been developed with various degree of sophistication and complexity by the satisfaction of exact constraints. Depending on the complexity, these functionals include electron density, density gradients, density Laplacian, kinetic …


Structural Microheterogeneity In Ionic Liquid/Solvent Mixtures Influenced By Solvent Polarity And Ion Concentration, Babatunde Falola Aug 2021

Structural Microheterogeneity In Ionic Liquid/Solvent Mixtures Influenced By Solvent Polarity And Ion Concentration, Babatunde Falola

Open Access Theses & Dissertations

Room temperature ionic liquid (RTIL) and organic solvent mixtures, in supercapacitors, have desirable properties in comparison to conventional electrolytes. We studied the nanostructural properties of mixtures of the RTIL: 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide (abbreviated to BMIM+[TSI]-), with organic solvents: acetonitrile, dichloromethane, benzene, toluene, and tetrahydrofuran. The mass percentage at which macroscopic phase separation is visible in each RTIL and solvent mixture was determined by slowly increasing the solvent concentration. Small-angle x-ray scattering (SAXS) measurements, at RTIL mass percentage lower than the phase separation concentrations, were carried out to determine whether nanoheterogeneity is presently leading up to macroscopic phase separation. …


Sawtooth-Based Chromate Multiferroic - Insight Into Structure And Magnetism, Hector Cein Mandujano Aug 2021

Sawtooth-Based Chromate Multiferroic - Insight Into Structure And Magnetism, Hector Cein Mandujano

Open Access Theses & Dissertations

The coexistence of two order parameters is a particular occurrence in bulk single-phase materials. Such materials possessing (anti)ferromagnetism, ferroelectricity, and ferroelasticity are known as multiferroics. In this work we revisit BeCr2O4, which is one of the oldest material to be studied in this context. Cr3+ occupies octahedral 4a site and Be2+ occupies tetrahedral 4c site in this compound, forming a close packing structure with a 90° and 138° Cr-O-Cr bonds allowing magnetic superexchange interactions. In the present work, BeCr2O4 powder was prepared using solid-state reaction method and the crystal structure was studied in detail using laboratory and synchrotron X-ray diffraction. …


Study Of Weakly Bound Cluster Anions Using Self Interaction Corrected Density Functional Scheme, Peter Obinna Ufondu Aug 2021

Study Of Weakly Bound Cluster Anions Using Self Interaction Corrected Density Functional Scheme, Peter Obinna Ufondu

Open Access Theses & Dissertations

The Kohn–Sham formulation of density functional theory (DFT) is a widely used quantum mechanical theory to study chemical and materials properties. The practical application of DFT requires an approximation to the exchange–correlation (XC) functional. These approximations suffer from self-interaction errors due to the incomplete cancellation of the self-Coulomb energy with the approximate self-exchange and correlation energy for one-electron densities. Systems with weakly-bound electrons impose great challenges to semi-local density functional approximations. We use recently developed local scaled self-interaction correction (LSIC) by Zope et al and the Perdew-Zunger SIC method using the Fermi-Löwdin orbitals to calculate the vertical detachment energies (VDEs) …


Two Developments For Efficient And Accurate Density Functional Theory Calculations, Zachary John Buschmann May 2021

Two Developments For Efficient And Accurate Density Functional Theory Calculations, Zachary John Buschmann

Open Access Theses & Dissertations

Density functional theory (DFT) has long been the workhorse of quantum chemists and materials scientists. As the ability of modern DFT codes to address larger and more complex molecular systems has grown, so too has the computational cost, with cutting edge simulations requiring thousands of hours of wall time on the worldâ??s fastest supercomputers.For this reason, efficiency in both memory and time is critical at every step of the process. In fact, the increasing scope of physical systems that can be modeled is as much a function of computational elegance as of the physical fidelity of the simulation. The continuing …